《《Nature》正刊刊登!南京大学万贤纲团队“渔网式搜索”揭秘近万种拓扑材料》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-02-28
  • 如何寻找一种拓扑材料?以前,在各类材料库的大海里,一种“鱼竿”只能“钓”出一种拓扑材料,“愿者上钩”;现在,“一张大渔网”就可以一网打尽,效率大大提高。2月28日,国际学术期刊《自然》正刊以《利用对称性指标进行拓扑材料全面搜索》为题,发表了这一重要研究——南京大学物理学院万贤纲教授的科研团队及其哈佛大学合作者,系统地大规模搜索了整个材料数据库,获得大量拓扑材料线索,并以此为基础设立了拓扑材料基因库。

    利用对称性指标(symmetry indicator)编织的渔网将晶体库 (图中的大海)中的拓扑材料(图中“拓扑”的鱼)一网打尽

    近年来,拓扑量子态是物理学和材料科学领域的前沿热点。2016年诺贝尔物理学奖授予了三位科学家,以表彰他们发现物质拓扑相以及在拓扑相变方面作出的理论贡献。随着新的拓扑相出现,人们发现,拓扑材料具有常规材料没有的奇特物性,在电子、信息和半导体技术等方面有很大潜力。

    目前,科学家主要通过计算拓扑不变量寻找各种拓扑相,这种方法效率较低,所以已知的拓扑材料数目十分有限。因而,发展新的理论方法,高效寻找理想的、有实用价值的拓扑材料体系有着重要的科学价值和广阔的应用前景。万贤纲教授团队埋首钻研,终于在搜索拓扑材料这个领域实现突破:基于对称指标理论,发展了一套新的高效寻找拓扑材料的理论方法。

    万贤纲介绍,具体来说,就是发展了一套非常高效的预测拓扑材料的方案。中国科学院院士、南京大学教授邢定钰表示,“这样高效的方案,很适合对晶体库进行地毯式搜索,从而得到拓扑材料基因库。”他认为,拓扑材料基因库将在未来给实验物理学家带来极大便利,将来的研究可以专注于基因库中的材料,而不必像以前那样“大海捞针”。

    据悉,万贤纲教授团队的一系列工作始于2017年8月,最开始计划去找寻当时非常新颖的高阶拓扑绝缘体。根据这一高效寻找拓扑材料的理论方法,万贤纲教授团队对所有非磁材料是否拓扑进行分类,发现近50%的材料都是拓扑材料。进而,他们把计算预言的10897种拓扑材料(含费米能级附近有能带交点的体系)的晶体结构信息及电子能带放在网站上,供同行参考与研究。他们还挑选了近一千个费米面比较干净或者能带交点离费米面较近的体系,预言进一步的研究将很可能从中挖掘出适合实际应用的理想拓扑材料。南京微结构国家实验室的博士研究生唐峰为第一作者。人工微结构科学与技术协同创新中心的姚舸工程师协助进行大规模计算和建设拓扑材料网站。

    “文章中给出的拓扑材料基因库,有望带来生机勃勃的后续实验或进一步理论探索。他们提出的高效拓扑材料搜索方法也适合其他体系,如声子系统、光子系统、磁性材料等。可以预期,大规模搜索与预测材料将成为凝聚态物理、材料科学的一种趋势,对相关领域发展将有积极推动作用。”邢定钰表示。

    值得提及的是,在《自然》正刊同期发表的还有中国科学院物理所一个研究团队和普林斯顿大学一个研究团队的相关工作,昭示出在拓扑新材料理论设计方面中国科研团队的优势地位。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=437539
相关报告
  • 《南京大学二维材料成果再登Nature!提出了一种新的“由高到低”的生长策略》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-11-12
    • 来自材料牛 二维范德华异质结(2D vdWH)近年来引起了广泛的关注,它不依赖于化学键、不受限于晶格匹配度,可以灵活地将多种材料堆叠组装在一起,被认为是探索新颖物理现象、实现多功能器件的最具潜力材料组合方式。目前其最广泛使用的制造方法是叠加机械剥离出微米大小的薄片,但这一过程不能扩展到实际应用。而且尽管已经创造了成千上万的二维材料,但几乎没有任何大型二维超导体可以完整地堆叠成vdW异质结构,这极大地限制了这类器件的应用。 南京大学高力波教授、徐洁博士和南方科技大学林君浩副教授带领团队提出了一种新的“由高到低”的生长策略,即以制备较高温度稳定性的二维材料为底层材料,在其上稳定温度稍低的二维材料,从而实现逐层堆叠生长vdWH。他们成功实现了将27种二组元、15种三组元、5种四组元和3种五组元二维材料组成的异质结。同时,堆垛其中的每种二维材料的层数都能够精确可控。这一系列的二维材料范德华异质结的成功制备为后续的物性研究和器件制造提供了丰富的超导异质结材料库和有效的制备方法。研究成果以以“Stack growth of wafer-scale van der Waals superconductor heterostructures”为题,2023年9月6日在线发表于Nature期刊。该工作由南京大学和南方科技大学共同完成,南京大学为第一单位。南京大学周振佳博士与南方科技大学侯福臣博士为本论文的共同第一作者。 【论文地址】 Zhou, Z., Hou, F., Huang, X. et al. Stack growth of wafer-scale van der Waals superconductor heterostructures. Nature (2023). https://doi.org/10.1038/s41586-023-06404-x 本文参考:https://www.nju.edu.cn/info/1067/338391.htm
  • 《南京大学制备新颖二维材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-06-10
    • (a-c)氧化物钙钛矿二维薄膜的制备与转移示意图;(d-g)不同晶向亚原子分辨结构表征;(h)氧化物钙钛矿二维材料中的丰富强关联二维量子态展望 南京大学聂越峰教授课题组采用分子束外延技术对非层状结构的氧化物钙钛矿材料进行单原子层精度的生长与转移,结合王鹏教授课题组的透射电子显微镜的结构分析,成功制备出基于氧化物钙钛矿体系的新颖二维材料。由于氧化物钙钛矿体系具有优异的电子特性,该成果开启了一扇通往具有丰富强关联二维量子现象的大门。6月6日,该成果以《单层氧化物钙钛矿二维晶体膜的实现》为题发表在《自然》杂志上。 目前已知二维材料,无论是机械剥离还是人工生长,都依赖于其特殊的层状结构特性及原子层间的弱键合作用。尽管非层状结构的氧化物钙钛矿体系由于电子的强关联效应呈现出极为丰富的物理和化学特性及其丰富多彩的量子现象,其原子层厚度的超薄二维材料的制备仍然是有待攻克重大难题。 据研究团队带头人潘晓晴解释,课题组采用了一种叫分子束外延的薄膜生长技术来制备氧化物钙钛矿二维材料。通过改进原位监控技术与采用高精度的逐层生长方法,成功实现了超薄氧化物钙钛矿薄膜的制备与转移的突破,获得原子层厚度的高质量氧化物钙钛矿二维材料。王鹏教授课题组利用多种先进球差校正透射电子显微镜结构分析技术实现了二维极限下电镜样品制备、层数标定和精细晶体结构表征,直接观测到钙钛矿BiFeO3薄膜在二维极限下出现若干新颖现象。这样重大突破性工作的实现得益于先进的分子束外延薄膜生长技术与亚原子分辨电子显微分析技术的有机结合及研究人员之间的密切合作。 据聂越峰介绍,电子在材料中的运动形式决定了材料的性能。在石墨烯等传统二维材料中,电子的运动相对自由,不太受其他电子的影响;而在很多氧化物钙钛矿材料中,电子之间存在很强的相互作用,正是这种电子间的强关联作用促成了包括高温超导在内的各种新奇的量子态。实现钙钛矿二维材料,在二维体系中加入这种电子间的强关联作用,有望获得更丰富而有趣的强关联二维量子现象及应用。 王鹏表示,高分辨电子显微镜技术在钙钛矿氧化物二维材料的发现过程中发挥了重要作用,这大大得益于最近十年来球差校正技术和先进表征方法的飞速发展。“我们相信,在微观尺度上该二维材料中将有更多有趣和新颖的物理现象等待我们探索和发现。” 这项研究成果由南京大学、美国加州大学尔湾分校和美国内布拉斯加—林肯大学的研究人员合作完成。 论文链接:https://www.nature.com/articles/s41586-019-1255-7