《Shedding new light on nanolasers using 2-D semiconductors》

  • 来源专题:后摩尔
  • 编译者: shenxiang
  • 发布时间:2020-05-14
  • In his latest line of research, Cun-Zheng Ning, a professor of electrical engineering in the Ira A. Fulton Schools of Engineering at Arizona State University, and his peers explored the intricate balance of physics that governs how electrons, holes, excitons and trions coexist and mutually convert into each other to produce optical gain. Their results, led by Tsinghua University Associate Professor Hao Sun, were recently published in the Nature publication Light: Science & Applications.

    "While studying the fundamental optical processes of how a trion can emit a photon [a particle of light] or absorb a photon, we discovered that optical gain can exist when we have sufficient trion population," Ning says. "Furthermore, the threshold value for the existence of such optical gain can be arbitrarily small, only limited by our measurement system."

    In Ning's experiment, the team measured optical gain at density levels four to five orders of magnitude—10,000 to 100,000 times—smaller than those in conventional semiconductors that power optoelectronic devices, like barcode scanners and lasers used in telecommunications tools.

    Ning has been driven to make such a discovery by his interest in a phenomenon called the Mott transition, an unresolved mystery in physics about how excitons form trions and conduct electricity in semiconductor materials to the point that they reach the Mott density (the point at which a semiconductor changes from an insulator to a conductor and optical gain first occurs).

    But the electrical power needed to achieve Mott transition and density is far more than what is desirable for the future of efficient computing. Without new low-power nanolaser capabilities like the ones he is researching, Ning says it would take a small power station to operate one supercomputer.

    "If optical gain can be achieved with excitonic complexes below the Mott transition, at low levels of power input, future amplifiers and lasers could be made that would require a small amount of driving power," Ning says.

    This development could be game-changing for energy-efficient photonics, or light-based devices, and provide an alternative to conventional semiconductors, which are limited in their ability to create and maintain enough excitons.

    文章信息:More information: Zhen Wang et al, Excitonic complexes and optical gain in two-dimensional molybdenum ditelluride well below the Mott transition, Light: Science & Applications (2020). DOI: 10.1038/s41377-020-0278-z

    文章链接:https://www.nature.com/articles/s41377-020-0278-z

相关报告
  • 《Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors》

    • 来源专题:绿色印刷—可穿戴电子
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers1. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H)2, 3, 4, 5 and organic semiconductors2, 6, 7, 8, 9, 10 have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V-1 s-1, which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6–9 cm2 V-1 s-1, and device characteristics are stable during repetitive bending of the TTFT sheet.
  • 《MedRixv,2月12日,Laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-13
    • Laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections Yang Yang, Minghui Yang, Chenguang Shen, Fuxiang Wang, Jing Yuan, Jinxiu Li, Mingxia Zhang, Zhaoqin Wang, Li Xing, Jinli Wei, Ling Peng, Gary Wong, Haixia Zheng, Mingfan Liao, Mingfeng Liao, Kai Feng, Jianming Li, Qianting Yang, Juanjuan Zhao, Zheng Zhang, Lei Liu, Yingxia Liu doi: https://doi.org/10.1101/2020.02.11.20021493 Abstract Background: The outbreak of novel coronavirus pneumonia (NCP) caused by 2019-nCoV spread rapidly, and elucidation the diagnostic accuracy of different respiratory specimens is crucial for the control and treatment of this diseases. Methods: Respiratory samples including nasal swabs, throat swabs, sputum and bronchoalveolar lavage fluid (BALF) were collected from Guangdong CDC confirmed NCP patients, and viral RNAs were detected using a CFDA approved detection kit. Results were analyzed in combination with sample collection date and clinical information. Finding: Except for BALF, the sputum possessed the highest positive rate (74.4%~88.9%), followed by nasal swabs (53.6%~73.3%) for both severe and mild cases during the first 14 days after illness onset (d.a.o). For samples collected ≥ 15 d.a.o, sputum and nasal swabs still possessed a high positive rate ranging from 42.9%~61.1%. The positive rate of throat swabs collected ≥ 8 d.a.o was low, especially in samples from mild cases. Viral RNAs could be detected in all the lower respiratory tract of severe cases, but not the mild cases. CT scan of cases 02, 07 and 13 showed typical viral pneumonia with ground glass opacity, while no viral RNAs were detected in first three or all the upper respiratory samples. Interpretation: Sputum is most accurate for laboratory diagnosis of NCP, followed by nasal swabs. Detection of viral RNAs in BLAF is necessary for diagnosis and monitoring of viruses in severe cases. CT scan could serve as an important make up for the diagnosis of NCP. Funding National Science and Technology Major Project, Sanming Project of Medicine and China Postdoctoral Science Foundation. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.