《"新华社" 我国科学家发现小球藻 "吃" 烟气中的氮氧化物和二氧化碳 》

  • 来源专题:长江流域资源与环境知识资源中心 | 领域情报网
  • 编译者: changjiang
  • 发布时间:2017-11-28
  • 新华社武汉11月22日电(记者谭元斌)如何妥善处理生物质燃烧发电所生成的电厂灰和烟气,避免对生态环境造成破坏,是当前的技术难题。我国科学家研究发现,小球藻能够以电厂灰和烟气中的氮氧化物、二氧化碳为“食”,并提出了一种生物质发电厂废弃物综合处理循环经济技术策略。

      记者从中国科学院水生生物研究所了解到,该所王强学科组以小球藻为材料,研究了微藻用于工业烟气氮氧化物生物减排、作用机理和碳/氮(C/N)代谢平衡,并在这些研究基础上,进一步评估以生物质发电厂所产生的电厂灰和烟气作为营养源培养小球藻生产油脂的可行性。

      他们发现,当电厂灰纳入培养基用作营养盐的同时以烟道气中的二氧化碳增强小球藻细胞的光合作用,最终获得分别比在常规培养基培养的小球藻提高了39%和35%的油脂和生物量生产率。小球藻细胞增长的同时降低了烟气中氮氧化物和二氧化碳浓度,达到接近100%的氮氧化物脱硝效率和最大0.46克/分升的CO2脱除率。培养结束后,电厂灰的最大处理效率为13.33 克/分升,且残余培养基中几乎无营养元素残留,可以安全排放或回收循环利用,进行连续微藻培养或农田浇灌。

      基于这些结果,王强学科组提出了一种生物质发电厂废弃物的综合处理循环经济技术策略,即通过利用生物质电厂发电过程中释放的工业废料作为营养用于微藻培养,同时生产生物油脂和其他高附加值产品,实现负碳生物能源的生产,并带来经济、社会和环境效益。

相关报告
  • 《加上高温高压 二氧化碳也能当发电“能手”》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-01-27
    • 关注国家重点研发计划“煤炭清洁高效利用和新型节能技术”重点专项② 相比于水蒸气发电机组,sCO2发电是一项颠覆性技术,涉及到许多关键技术的研发,商业化还需一段时间,但它代表能源动力行业的发展方向。 徐进良 项目负责人、华北电力大学教授、教育部重点实验室主任 在日前闭幕的中央经济工作会议上,“做好碳达峰、碳中和工作”被列为2021年的重点任务之一。 在国家重点研发计划专项成果中,就有一批煤炭清洁高效利用和新型节能技术。科技日报记者从科技部高技术研究发展中心获悉,国家重点研发计划“煤炭清洁高效利用和新型节能技术”重点专项部署的“超高参数高效二氧化碳燃煤发电基础理论与关键技术研究”项目,由华北电力大学牵头,取得重要突破。超高参数二氧化碳(简称sCO2)燃煤发电系统采用高温高压二氧化碳代替水蒸气,实现动力循环和电力生产。项目最终完成发电效率51%的1000兆瓦(MW)级系统概念设计,为逐步推进大容量超高参数二氧化碳燃煤发电系统示范及应用奠定理论与技术基础。 与水蒸气发电相比,可实现快速升降负荷 为做好碳达峰与碳中和,中国承诺2030年左右使二氧化碳(CO2)排放达到峰值,争取2060年前实现碳中和,这就需要大幅减少CO2排放。 “一方面,发挥煤炭‘压舱石’作用,支撑清洁煤炭发电。另一方面,大力发展可再生能源,实现多能源互补,保证能源安全。”项目负责人、华北电力大学教授、教育部重点实验室主任徐进良在接受科技日报记者采访时表示。 可再生能源发电时大时小、不稳定,“变脸变得快”,导致弃风弃光现象的发生。煤炭发电要跟上这种“变脸”,就需要快速变负荷。 “超高参数二氧化碳煤炭发电由于热源温度高,相比于水蒸气发电机组,具有明显效率优势,减少了CO2排放。同时,sCO2发电机组设备少,体积小,机组惯性小,非常灵活,可实现快速升降负荷,这对于水蒸气发电来说是难以实现的。”徐进良说,sCO2发电对于平衡电网负荷波动,保持供给侧和需求侧平衡,具有重要意义,是未来发展方向。 基于此,国家重点研发计划“煤炭清洁高效利用和新型节能技术”重点专项中的“超高参数高效二氧化碳燃煤发电基础理论与关键技术研究”项目应运而生。 既考虑原始创新,又考虑工程落地需求 记者获悉,项目旨在研究解决超高参数二氧化碳燃煤系统能量梯级利用、热力学循环及热学优化理论,以及关键部件能质转换与传递机理的关键科学问题,突破锅炉燃烧及污染物控制、换热器、透平及一体化系统设计等关键技术。 为什么要设定如此的目标? “在我国发展sCO2燃煤发电过程中,基于我国国情及自主创新指导思想,走与国外不同的技术路线。我们既考虑原始创新,又考虑工程落地需求。”徐进良说。 在目标方面,我们要梳理sCO2煤炭发电和水蒸气发电,在热力系统构建、关键设备机理、设计、制造及运行方面,哪些是相同的,哪些是不同的,重点要攻克哪些技术难题? “针对关键技术突破,形成系统的热力系统构建、关键设备工作机理、以及经过实验验证的理论和方法,支撑我国sCO2煤炭发电事业的发展。”徐进良说,通过研究,需回答采用sCO2煤炭发电在节省煤炭资源、降低二氧化碳排放及经济性方面的优势,这些分析需建立在定量数据基础上。 在循环热力系统的构建上取得突破 徐进良介绍,项目实施分两个阶段,第一阶段是2019年的中期验收。第二阶段是从中期验收到目前。 第一阶段在sCO2煤炭发电循环热力系统的构建上取得突破性进展。 “超高参数二氧化碳循环最初不是针对煤炭发电提出的。这个循环要用到煤炭发电上,出现了许多新的问题。在项目第一阶段,围绕循环流量大,锅炉管堵塞引起机组效率下降,以及如何实现烟气热量‘吃干榨净’等关键问题,项目提出了锅炉模块化设计以及能量复叠利用原理,彻底解决了循环构建方面的难题。”徐进良说。 第二阶段在关键部件能量传递转化上取得突破。 “最典型的是发现超临界流体的不均匀物质结构,颠覆了超临界流体具有均匀流体结构的常规认知,这一发现对于发展关键部件设计及运行技术意义重大,大幅提高关键设备设计精度并保证安全。”徐进良说。 超临界态是物质的一种状态,超临界流体在自然界和工程上广泛应用。项目关于超临界不均匀物质结构的研究也引起国际学术界关注,美国学者在发表的论文中,长篇幅正面引用及评价了本项目工作。 “本项目的工作指导了工程实际,项目理论指导了在华北电力大学建立的超高参数二氧化碳实验设施的建设,该实验台压力高达26兆帕(MPa),而国际上超高参数二氧化碳数据集中在8MPa左右,难以满足工程实际的需求,该实验台的建立弥补了国际上超高参数二氧化碳传热数据的不足。”徐进良说,另外,本项目成果还指导了我国建设的小容量超临界二氧化碳煤炭机组的研发。 以能解决关键科学技术问题为检验标准 在徐进良看来,项目取得关键突破有三个原因。 第一是“反四唯”的结果,项目实施不以发表论文和专利为指挥棒,而以能真正解决关键科学技术问题为检验成果的标准。为此,项目组克服困难,大胆创新,取得好的效果。 第二是管理体制的改革,使项目实施更顺利。科技部实行“放管服”改革,简化了项目管理,减少了各类表格的填写,科研人员有更多时间思考科学技术问题和做研究,提高了研发效率。 第三是项目组实行了“挂图施工”,项目负责人严格按时间节点,督促项目组成员完成研发任务,保证质量,保证各课题间的数据交汇等。 对于未来项目的攻关工作,徐进良认为,相比于水蒸气发电机组,sCO2煤炭发电是颠覆性技术,涉及到许多关键技术的研发,商业化还需一段时间,但它代表能源动力行业的发展方向。 徐进良建议,我国“十四五”期间,应围绕sCO2煤炭发电,建设综合性关键技术及系统集成平台,验证已取得的sCO2煤炭发电理论和方法,取得运行数据,系统评估材料的耐久性,评估sCO2煤炭发电在经济及环保方面的优势,为建设商业化的sCO2煤炭发电机组进行技术储备和奠定基础。 “同时,着手进行大型sCO2煤炭发电机组发电的设计工作。地方政府和企业也积极加入sCO2发电技术的研发行列,并开辟sCO2太阳能发电、sCO2中高温余热发电的新模式。”徐进良说。
  • 《我科学家实现二氧化碳高选择性转化》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-04-14
    • 记者12日从中国科学技术大学获悉,该校高敏锐教授课题组和俞书宏院士团队设计了系列具有“富集”效应的纳米催化剂,成功实现了二氧化碳到目标产物的高选择性转化。相关成果日前在线发表在《德国应用化学》和《美国化学会志》杂志上。   二氧化碳转化技术不仅能够降低大气中的二氧化碳浓度,同时还可以得到诸多高附加值的碳基燃料。电催化二氧化碳还原技术具有可在常温常压下进行,能够实现人为闭合碳循环等优点,为当前可再生能源的利用和化学燃料合成提供了一种具有应用前景的方法。通过更高效催化剂的理性设计与可控合成,并结合催化机制理解,从而实现二氧化碳电还原技术走向工业化应用成为研究重点与难点。   研究人员提出纳米针尖的“近邻效应”促进二氧化碳电还原过程,通过智能微波反应器的高通量筛选,制备了硫化镉纳米针阵列结构。研究发现随着针尖之间距离的逐渐减小,钾离子富集会不断增强。流动电解池测试表明,这种多纳米针尖硫化镉催化剂由于“近邻富集效应”,其性能大大优于其他过渡金属硫属化物电催化剂。该成果在线发表在《德国应用化学》杂志上,并被选为“卷首插画”论文。   在利用纳米多针尖的“近邻效应”实现对目标离子的富集的基础上,科研人员进一步提出利用纳米空腔的“限域效应”来富集反应中间体,实现二氧化碳到多碳燃料的高效率转化。研究成果发表在《美国化学会志》上。   以上研究成果表明了二氧化碳电还原反应中催化剂纳米结构设计对催化性能的重要影响,纳米尺度“富集效应”可有效增强关键中间体的吸附,从而推动反应高效率运行。这种新的设计理念为今后相关电催化剂的设计和高附加值碳基燃料的合成提供了新的思路。