《美国天体物理联合实验室(JILA)研究团队开展三维光学晶格中原子超交换相互作用的相干演化研究,为提高光学晶格钟的精度和性能奠定基础》

  • 来源专题:计量基标准与精密测量
  • 编译者: 李晓萌
  • 发布时间:2025-06-07
  • 创造世界上最精确的时钟面临的挑战在于,即使是极其微小的偏差也会限制其精度。原子钟依赖于原子状态的相干演化,是人类已知最精确的时间测量装置。然而,要达到这种精度水平,需要深入理解原子之间的相互作用,尤其是在将大量原子密集排列以增强信号强度时。

    在最近发表于《Science》期刊(DOI:10.1126/science.ado5987)的一项研究中,来自美国天体物理联合实验室(JILA)和美国国家标准与技术研究院(NIST)的研究员以及科罗拉多大学博尔德分校的物理教授Jun Ye和Ana Maria Rey深入探讨了原子之间的相互作用,重点关注在三维光学晶格中发生的超交换过程。

    超交换相互作用的作用

    超交换相互作用是最近邻原子自旋之间的二阶隧穿过程。这些相互作用对于理解反铁磁性和超导性等磁性现象至关重要。在原子钟的背景下,超交换相互作用会影响时钟的相干时间和精度。

    要理解超交换的概念,可以想象一场接力赛,接力棒在传递给最后一名选手之前会经过几个中间人。类似地,在超交换相互作用中,原子通过虚拟隧穿过程交换自旋,从而产生相干的自旋动力学。这种相互作用通常很微弱,如果不是为了追求尽可能高的时钟精度,研究人员可能会忽略它。

    在研究中,研究人员使用了一种核自旋极化的87Sr原子的退化费米气体,并将其加载到三维光学晶格中。通过调节晶格的约束条件并应用成像光谱学,他们绘制出了有利于原子相干的区域。时钟激光将每个原子准备在两个电子态的相干叠加态中,这可以被视为一个伪自旋1/2。时钟激光的传播效应引入了一个自旋轨道耦合相位,将海森堡自旋模型转变为具有XXZ型自旋各向异性的模型。

    论文的第一作者William Milner解释说:“你希望尽可能多地使用原子,以获得最高的精度。当你将它们装入这个三维晶格时,它们开始相互作用。这些原子可以相互‘交流’,因此你不能再将它们视为孤立的原子。”

    实验装置涉及一个高度填充的Sr三维晶格,原子被限制在晶格的基带中。研究人员采用拉姆齐光谱学来测量原子的相干性并观察超交换相互作用。这种技术使他们能够直接探测超交换相互作用的相干特性,持续时间可达数秒。

    平衡相互作用

    研究的一个关键发现是识别了原子相干性最大化的条件。通过改变晶格的约束条件,研究人员观察到s波和p波相互作用如何导致去相干和原子损失。这些相互作用可以通过平衡来实现最佳的相干时间,这对于光学晶格钟的精度至关重要。想象一下用两个体重不同的孩子来平衡一个跷跷板。为了达到平衡,你需要仔细调整他们的位置。类似地,在光学晶格中,研究人员平衡了s波和p波相互作用,以最小化去相干。

    然而,在深度横向约束条件下,研究人员直接观察到了相干的超交换相互作用,这种相互作用可以通过现场相互作用和位点间能量转移进行调节。米尔纳进一步解释说:“在这个条件下,超交换相互作用才会出现。这些高阶相互作用的发生是因为原子不能自由移动,但它们可以虚拟地跳到一个位点上,然后再跳回来,同时交换自旋。”

    研究直接观察到了超交换动力学,这些动力学表现为拉姆齐条纹对比度的振荡,持续时间达数秒。这些观察结果被一个各向异性的晶格自旋模型很好地捕捉到,由于自旋轨道耦合相位的存在,该模型打破了海森堡SU(2)对称性。此外,实验还展示了通过晶格强度和势能梯度直接调节相互作用的能力。

    提升时钟性能

    光学晶格钟正在推动基础物理、计量学和量子模拟领域的发展。通过控制超交换相互作用,研究人员能够提升这些时钟的性能,从而实现更精确的时间测量,并为量子磁性和自旋纠缠提供新的见解。

    正如一支精心调校的管弦乐队能够呈现出完美的演奏一样,一个受控良好的光学晶格钟可以达到前所未有的精度。实验表明,通过调节晶格约束并控制超交换相互作用,研究人员能够优化时钟的相干时间。这有望进一步推动时间测量技术的发展,并为量子技术开辟新的应用领域。

    Milner指出:“通过改变约束条件,你可以让这些超交换相互作用变得非常小,几乎可以忽略不计。另一方面,利用这些相互作用来创建纠缠态是有可能的,这将使精度得到进一步提高。”

    Jun Ye教授组的博士后Stefan Lannig补充说:“我们希望在三维晶格中捕获原子,以获得尽可能多的原子数量,从而实现最高的精度,但同时希望样品尽可能小。这有助于我们消除背景效应,达到最佳性能。”

    展望未来,这项研究为利用光学晶格钟探索量子磁性和自旋纠缠开辟了新的途径。通过利用超交换相互作用的相干特性,科学家可以更深入地探究多体系统的量子动力学。这可能会带来基础物理学理解方面的突破,并推动先进量子技术的发展。

    Jun Ye教授组的这项研究是原子钟和量子计量学领域的一个重要进步。通过揭示超交换相互作用的复杂性,研究人员为提高光学晶格钟的精度和性能奠定了基础。JILA的研究人员正在通过调控原子之间的相互作用,揭开时间本身的奥秘,推动完美时间测量的边界。

    这项研究得到了美国能源部量子系统加速器中心、国家科学基金会量子跃迁挑战研究所(QLCI)、JILA物理前沿中心、V. Bush奖学金以及美国国家标准与技术研究院(NIST)的支持。

  • 原文来源:https://jila.colorado.edu/news-events/articles/pursuit-perfect-timekeeping
相关报告
  • 《美国天体物理联合实验室(JILA)的研究人员发现了核时钟所需的最佳温度》

    • 来源专题:计量基标准与精密测量
    • 编译者:张宇
    • 发布时间:2025-03-26
    • 几十年来,原子钟一直是精确计时的巅峰之作,使GPS导航、尖端物理研究以及对基本理论的测试成为可能。近日,由JILA和NIST研究员、科罗拉多大学博尔德分校物理学教授叶军领导的JILA研究人员与维也纳工业大学合作,正在推动某种物质的原子跃迁转向可能更加稳定的状态,从而满足核钟计时的要求。这个时钟可以利用钍-229原子核内一种独特的低能量跃迁来实现计时。与现代原子钟相比,这种跃迁对环境干扰的敏感度更低,并且已被提议用于标准模型以外的基础物理测试。 这个想法在叶军的实验室里并不新鲜。事实上,实验室对核钟的研究始于一项具有里程碑意义的实验,其结果去年作为《Nature》期刊的封面文章被发表。在该实验中,研究团队首次对掺钍的宿主晶体中的钍-229原子核的能量跃迁过程进行了基于频率的量子态分辨测量。这一成就证实了钍的核跃迁能够以足够高的精度被测量,以用作计时的参照。 然而,要构建一个精确的时钟,研究人员必须全面了解跃迁对外部条件(包括温度)的敏感程度。这就是这项新研究的意义所在——这是一篇发表在《Physical Review Letters》上的“编辑精选”论文,因为该团队研究了当含有钍原子的晶体被加热到不同温度时,钍原子核中的能量转移变化。 “这是对核钟系统特性进行描述的第一步,”该研究的第一作者、JILA博士后研究员Jacob Higgins博士说。“我们发现了一种对温度变化相对不那么敏感的跃迁,这正是我们想要构成的精密计时设备所需要的。” “固态核时钟有很大的潜力成为一种坚固便携且高精度的计时设备,”叶军指出。“我们正在为紧凑的核时钟确定具体的参数阈值,以使其能够保持10^-18的分数频率稳定性。” 由于原子核受环境干扰的影响比电子小得多,因此核时钟可以在原子钟失效的情况下保持准确性,因为核钟对噪声的抵抗力更强。在所有其他原子核中,钍-229特别适合用于构建核钟,因为它的核跃迁过程仅需要很低的能量,这使得研究人员可以使用紫外线而不是高能伽马射线来探测它。 与在囚禁离子系统中测量钍原子不同,叶军的实验室采用将钍-229嵌入固态宿主——氟化钙(CaF?)晶体中的方法来进行测量。这种方法由他们与维也纳工业大学合作开发的,与传统的离子陷阱探测技术相比,钍原子核的密度要高得多。更多的原子核意味着用于测量核跃迁的探测系统将有更强的信号和更好的稳定性。 为了研究温度对这种核跃迁的影响,研究人员将掺杂钍的晶体冷却和加热到三种不同的温度:用液氮冷却到150K(-123°C)、用干冰-甲醇混合物冷却到229K(-44°C)以及加热到293K(接近室温)。通过使用频率梳激光器,研究人员测量了在不同温度下核跃迁频率的变化情况,揭示了晶体内部两种相互竞争的物理效应。 一方面,随着晶体温度升高,它会膨胀,并使得原子晶格有微妙的变化,从而改变钍原子核所经历的电场梯度。这种电场梯度导致钍原子核的跃迁分裂成多条光谱线,这些光谱线随着温度的变化而向不同的方向移动。另一方面,晶格膨胀也改变了晶体中电子的电荷密度,改变了电子与原子核的相互作用强度,导致光谱线向同一方向移动。 当这两种效应争夺对钍原子的控制权时,研究人员观测到一个特殊的跃迁过程,其对温度的敏感性远低于其它跃迁,因为这两种效应在很大程度上相互抵消了。在所探测的整个温度范围内,这种跃迁仅偏移了62kHz,比其它跃迁中的偏移至少小了30倍。 “这种跃迁的探测结果对精确计时应用来说非常有前景,”JILA研究生Chuankun Zhang补充道。“如果我们能够进一步稳定它,它可能会在精准计时领域带来真正的变革。” 下一步,该团队计划寻找一个温度“最佳点”,即在这个点上核跃迁几乎完全不受温度的影响。研究人员的初步数据表明,在150K到229K之间的某个温度,跃迁频率将更容易稳定,这为未来的核时钟提供了理想的运行条件。 制造一种全新的类型的时钟需要量身定制的独特设备,其中大部分设备的现有加工工艺都不满足所需的条件。多亏了JILA的仪器车间及其机械师和工程师,该团队能够为他们的实验制造关键组件。 “Kim Hagan和整个仪器车间在整个过程中都非常有帮助,”Higgins指出。“他们加工了用于固定掺钍晶体的晶体支架,并构建了冷阱系统的部件,使我们能够精确地控制温度。” 拥有内部机械加工专业知识背景的研究人员能够快速迭代设计,并确保即使是很小的改动(例如更换晶体)也可以轻松完成。 “如果我们只使用现成的零件,就不会对我们的设备有同样的信心,”另一名团队成员JILA 研究生Tian Ooi补充道。“仪器车间制造的定制部件为我们节省了大量时间。” 虽然这项研究的主要目标是开发一种更稳定的核时钟,但其影响超出了计时领域。钍核跃迁对其环境的干扰非常不敏感,但对基本力的变化却高度敏感——其频率的任何意外变化,都意味着物理学上的新发现,例如暗物质的存在。 “核跃迁的敏感性可以促进我们对物理学新领域的进一步探索,”Higgins解释说。“除了制造更好的精确计时系统外,它还可以帮助我们打开研究宇宙新方式的大门。” 这项研究得到了美国陆军研究办公室、美国空军科学研究办公室、美国国家科学基金会、量子系统加速器,以及美国国家标准与技术研究院(NIST)的支持。
  • 《美国天体物理联合实验室(JILA)等机构研究人员开发新型光学原子钟,利用量子纠缠的原理来提高时间测量的精度》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-10-18
    • 近日,美国国家标准与技术研究院(NIST)和科罗拉多大学博尔德分校的联合研究所JILA的研究人员Fellow、NIST物理学家/科罗拉多大学博尔德分校物理学教授Adam Kaufman及其团队已经涉足原子和电子的微小领域。他们的研究涉及使用锶原子晶格创建一个先进的光学原子钟,通过量子纠缠增强,量子纠缠是一种将粒子命运联系在一起的现象。这个雄心勃勃的项目可能会彻底改变计时,有可能超越精度的“标准量子极限”。 该团队与JILA和NIST研究员Jun Ye合作,10月9日在《Nature》期刊(DOI: 10.1038/s41586-024-07913-z)上强调了他们的发现,展示了他们的时钟在某些条件下如何超过传统的精度基准。他们的工作推进了计时,并为新的量子技术打开了大门,例如精确的环境传感器。 这些时钟通过冷却和捕获原子并使用激光诱导能量跃迁,以极高的精度测量时间。然而,原子行为固有的不可预测性带来了局限性。量子纠缠提供了一种解决方案,使纠缠原子作为一个集体更可预测地发挥作用。