《乌克兰利用纳米生物金属促进植物生长技术》

  • 来源专题:转基因技术
  • 编译者: dingqian
  • 发布时间:2016-12-23
  • 乌克兰科学家研发出利用纳米生物金属作为营养均衡元素,促进植物在环境转化条件下的生长技术。

    传统上,乌克兰植物追肥和牲畜饲料问题是通过重金属和螯合化合物盐形成的微量元素来解决的,但是使用金属盐,一方面受限于植物的最大耐受剂量,另一方面,来自于金属离子对环境污染的危险。

    新技术利用金属纳米粒子作为微量元素,可以促进环境转化条件下农业的可持续发展。借助于纳米颗粒胶体溶液的物理和化学性质,优化生物金属环境友好功能,促进植物的生长。

    纳米尺寸金属颗粒胶体溶液预处理剂量是0.2 L / T,每公顷施肥1-2升,较当前使用的微量元素可显著减少使用剂量。纳米粒子胶体溶液还可添加到化学杀虫剂药液中,以及预处理冬小麦种子,可自种子发芽过程起,优化作物生长发育。

    金属纳米粒子作为微量元素技术应用的主要优点是,社会效益高、经济可行性、效果显著、易用性、生态安全,最大程度降低对生态系统和土壤腐蚀的影响。

  • 原文来源:http://www.most.gov.cn/gnwkjdt/201612/t20161212_129497.htm
相关报告
  • 《纳米粒子如何影响植物功能?》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-04-02
    • 科学家们正在进行广泛的研究,以开发金属基和碳基纳米材料,以改善植物的生长和发育。纳米材料可以作为一种有前途的工具,以可控的方式将基因(正常植物功能所需的)或化学物质传递到目标位点,具有很高的准确性。 暴露于纳米材料中的植物会发生各种形态和生理变化。它们功能表达的变化取决于几个参数,如纳米颗粒的性质、宿主植物和纳米颗粒相互作用的特定类型、表面涂层、大小、剂量、暴露时间等。 对植物与纳米颗粒相互作用的动力学机制尚不清楚。然而,一些研究报道了纳米颗粒对植物功能和发育的积极和消极影响。 纳米粒子对植物的积极作用 纳米技术在解决由于农业实践中过度使用化肥而出现的各种环境和健康问题方面具有作用。许多纳米粒子,包括碳纳米管、银、氧化钛、金、硫、锌、铁、二氧化硅、磷灰石、铜、壳聚糖- NKP-纳米粒子和碳纳米管涂层NKP+壳聚糖NPK-纳米粒子,在适当的浓度下使用可以改善植物生长和增加作物产量。 不同纳米颗粒对植物功能的其他一些积极影响包括: 种子发芽率:在高浓度TiO2纳米溶液中浸泡过的菠菜种子发芽率较高。这种处理促进菠菜的生长,加速氮的吸收。该反应机制涉及到菠菜叶绿体中氧演化速率的激发,改善了叶绿体的偶联,增强了Mg2+- atp酶和叶绿体偶联因子在类囊体膜上的活性。这种纳米颗粒还可以保护叶绿体在长时间的光照下不老化。 2 .光合速率:Rubisco(一种参与碳固定的酶)的活性显著提高,在经过纳米锐钛酸酶处理的菠菜中可见到。电子转移、氧演化和光磷酸化的速率也有增加。Rubisco蛋白水平和活性的升高导致Rubisco羧化作用的改善,增加光合碳反应速率。 植物生物量和根系伸长:氧化铝纳米颗粒的应用增加了Lemna minor (duckweed)的根长、叶数和总生物量。生物量的这种发展是由于光合作用效率的提高。氧化铝纳米颗粒提高了光系统II的量子产率。同样,在萝卜和油菜中,铝纳米颗粒的应用可以显著提高根长。 产量增加:纳米氧化铁颗粒的应用使粮食产量最高,与对照相比增加了48%。这可能是因为纳米氧化铁可以促进光合产物和铁转移到叶片。 纳米颗粒对开花的植物刺激作用:纳米颗粒具有独特的生物特性,可以作为植物生长促进剂。将鳞茎浸泡在纳米银溶液中是促进植物生长和开花的有效策略。经纳米银处理的植物开花数量较多,花期较长。 纳米粒子对植物的负面影响 许多研究者报道了纳米颗粒对植物功能的不利影响,下面将讨论其中的一些。 植物生长抑制:利用洋葱根尖细胞研究纳米银颗粒(小于100 nm)的细胞毒性和基因毒性,发现纳米银颗粒浓度越高,有丝分裂指数越低。银纳米颗粒破坏细胞分裂的各个阶段,导致分裂中期、染色质桥接、多染色体断裂和细胞解体。氧化铜纳米粒子在农业和草原植物中引起DNA损伤。 种子萌发抑制:单分散纳米氧化锌颗粒对种子萌发有明显的抑制作用。 植物色素产量减少:氧化铜纳米颗粒降低植物叶绿素浓度。 光合作用:通过铜离子和铜纳米粒子的应用,可以促进大叶白杨(Elodea densa, Planch)植株的脂质过氧化反应。在较高的浓度下,纳米颗粒的积累会增加过氧化氢酶和超氧化物歧化酶的活性,降低光合作用。 根系统的破坏:钴和氧化锌纳米颗粒对洋葱根的植物毒性研究表明,与对照植物相比,增加纳米颗粒的浓度可以抑制根的伸长。氧化钴纳米颗粒的植物毒性可能是由于纳米颗粒通过吸附堵塞水渠,而氧化锌纳米颗粒可能从根本上渗入洋葱根部,破坏整个细胞的新陈代谢和细胞分裂阶段。
  • 《昆明植物所等解析聚天冬氨酸促进植物富集重金属镉的机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-01-07
    • 重金属镉(Cd)对生物体而言是一种有毒元素,耕地土壤中的Cd严重威胁着人类健康,去除污染土壤中的Cd是保证土壤长期安全利用的必要措施。植物提取是利用Cd高(超)富集植物将土壤中的Cd吸收和转运至地上部分,通过收获植物材料进行无害化、资源化处理的一种修复土壤Cd污染的绿色技术。除了植物对Cd的吸收和富集能力,植物提取效率与土壤条件也密切相关:一方面,土壤中的有效营养影响植物的生长;另一方面,土壤中Cd的有效性直接决定植物对Cd的吸收效率。因此,可以利用一些土壤改良剂提高土壤中矿质元素或重金属的生物有效性来强化植物提取效率。 聚天冬氨酸(PASP)是一种可完全降解的天然聚合物,在农业和环境领域有广泛的应用。研究发现PASP能有效强化植物对土壤中重金属的提取效率,但前期普遍认为PASP通过螯合作用直接活化了土壤中的重金属或营养元素,而忽略了PASP与其他土壤因子(特别是土壤微生物)的相互作用是否会对植物富集重金属产生影响。为了从相关机制中进一步发掘强化植物提取Cd效率的方法,中国科学院昆明植物研究所和云南师范大学研究人员以Cd高富集植物鬼针草(Bidens pilosa L.)为研究对象,对以上问题展开了研究。 研究人员发现土壤添加3g kg-1和6g kg-1的PASP不仅显著(P < 0.05)增加了鬼针草的生物量,也显著(P < 0.05)促进了鬼针草对Cd的吸收(图1),最终使得鬼针草对Cd的提取效率(地上部分总Cd富集量)分别提高了46.4%和76.4%。对植物根际土壤的元素含量分析表明PAPS处理明显改变了(P < 0.05)土壤元素的有效性,从而有效促进了植物对Cd和营养元素的摄入。除了PASP对元素的直接螯合作用,该研究发现PAPS处理使植物根际募集了多种植物促生菌(图2),这些植物促生菌能通过多种机制促进Cd胁迫下鬼针草的生长和活力,同时一些植物促生菌也能通过分泌有机酸、铁载体等物质间接活化土壤中Cd和营养元素。其中,一些具有解钾(K)功能的植物促生菌可能和PASP一起使得土壤有效K含量增加3.7~21.7倍,除了作为植物营养,有效K的增加可能也对植物富集Cd具有重要的调节作用。此外,植物生理和代谢组分析发现鬼针草叶片中抗氧化酶、氨基酸、有机酸和脂类参与的多种解毒过程被显著(P < 0.05)诱导,这是鬼针草在Cd摄入显著增加的情况下维持生长的内在基础。 以上结果表明PASA通过重塑植物根际环境(特别是微生物群落组成)和调节植物代谢过程来促进鬼针草的生长和对Cd的富集。该研究促进了对土壤螯合剂强化植物提取效率的机制的认识,为螯合剂和植物促生菌联合强化植物提取效率提供了理论指导。研究结果以Polyaspartic acid enhances the Cd phytoextraction efficiency of Bidens pilosa by remolding the rhizospheric environment and reprogramming plant metabolism为题发表在Chemosphere上。相关研究工作得到中国科学院青年创新促进会和云南省基础研究计划重点项目等的支持。