《Cell,3月16日,SARS-CoV-2 evolution in an immunocompromised host reveals shared neutralization escape mechanisms》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2021-03-23
  • SARS-CoV-2 evolution in an immunocompromised host reveals shared neutralization escape mechanisms
    Sarah A. Clark 6
    Lars E. Clark 6
    Junhua Pan 6
    Jonathan Z. Li
    Anthony Griffiths
    Jonathan Abraham 7
    Show all authors
    Show footnotes
    Published:March 16, 2021DOI:https://doi.org/10.1016/j.cell.2021.03.027

    Summary
    Many individuals mount nearly identical antibody responses to SARS-CoV-2. To gain insight into how the viral spike (S) protein receptor-binding domain (RBD) might evolve in response to common antibody responses, we studied mutations occurring during virus evolution in a persistently infected immunocompromised individual. We use antibody Fab/RBD structures to predict, and pseudotypes to confirm, that mutations found in late-stage evolved S variants confer resistance to a common class of SARS-CoV-2 neutralizing antibodies we isolated from a healthy COVID-19 convalescent donor. Resistance extends to the polyclonal serum immunoglobulins of four out of four healthy convalescent donors we tested and to monoclonal antibodies in clinical use. We further show that affinity maturation is unimportant for wildtype virus neutralization but is critical to neutralization breadth. As the mutations we studied foreshadowed emerging variants that are now circulating across the globe, our results have implications to the long-term efficacy of S-directed countermeasures.

  • 原文来源:https://www.cell.com/cell/fulltext/S0092-8674(21)00355-X
相关报告
  • 《Cell,3月12日,Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2021-03-22
    • Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity Wilfredo F. Garcia-Beltran 12 Evan C. Lam 12 Kerri St. Denis 12 A. John Iafrate Vivek Naranbhai Alejandro B. Balazs 13 Show all authors Show footnotes Open AccessPublished:March 12, 2021DOI:https://doi.org/10.1016/j.cell.2021.03.013 Summary Vaccination elicits immune responses capable of potently neutralizing SARS-CoV-2. However, ongoing surveillance has revealed the emergence of variants harboring mutations in spike, the main target of neutralizing antibodies. To understand the impact of these variants, we evaluated the neutralization potency of 99 individuals that received one or two doses of either BNT162b2 or mRNA-1273 vaccines against pseudoviruses representing 10 globally circulating strains of SARS-CoV-2. Five of the 10 pseudoviruses, harboring receptor-binding domain mutations, including K417N/T, E484K, and N501Y, were highly resistant to neutralization. Cross-neutralization of B.1.351 variants was comparable to SARS-CoV and bat-derived WIV1-CoV, suggesting that a relatively small number of mutations can mediate potent escape from vaccine responses. While the clinical impact of neutralization resistance remains uncertain, these results highlight the potential for variants to escape from neutralizing humoral immunity and emphasize the need to develop broadly protective interventions against the evolving pandemic.
  • 《Cell,3月16日,N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2021-03-23
    • N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 Matthew McCallum # Anna De Marco # Florian A. Lempp Davide Corti Matteo Samuele Pizzuto David Veesler % Show all authors Show footnotes Published:March 16, 2021DOI:https://doi.org/10.1016/j.cell.2021.03.028 Summary The SARS-CoV-2 spike (S) glycoprotein contains an immunodominant receptor-binding domain (RBD) targeted by most neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about neutralizing Abs binding to epitopes outside the RBD and their contribution to protection. Here, we describe 41 human monoclonal Abs (mAbs) derived from memory B cells, which recognize the SARS-CoV-2 S N-terminal domain (NTD) and show that a subset of them neutralize SARS-CoV-2 ultrapotently. We define an antigenic map of the SARS-CoV-2 NTD and identify a supersite (designated site i) recognized by all known NTD-specific neutralizing mAbs. These mAbs inhibit cell-to-cell fusion, activate effector functions, and protect Syrian hamsters from SARS-CoV-2 challenge, albeit selecting escape mutants in some animals. Indeed, several SARS-CoV-2 variants, including the B.1.1.7, B.1.351 and P1 lineages, harbor frequent mutations within the NTD supersite suggesting ongoing selective pressure and the importance of NTD-specific neutralizing mAbs for protective immunity and vaccine design.