《美国研究团队利用全基因组测序扩展和更新了“千人基因组计划”资源》

  • 来源专题:生物安全网络监测与评估
  • 编译者: 闫亚飞
  • 发布时间:2022-11-25
  • 据生物谷网9月7日消息,美国纽约基因组中心、麻省总医院、耶鲁大学和人类基因组结构变异联盟等研究团队扩充了“千人基因组计划资源”(1kGP)资源,并使用Illumina NovaSeq仪器对其重新进行高覆盖率测序。研究人员对从包括602个亲子三人组在内的3202个样本的淋巴母细胞系中提取的DNA进行测序,并对样本中发现的一组结构变异(SVs)综合集合进行了基因分型。资源的扩充和更新提高了对变异识别的发现能力和精度,以及家族样本的丰富程度,将成为未来人群遗传学研究和方法发展的基准。相关研究成果发表于Cell期刊。
  • 原文来源:https://news.bioon.com/article/d091e378844a.html
相关报告
  • 《中国科学家率先完成菊花全基因组测序》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2017-12-12
    • 12月7日,中国中医科学院中药研究所和安利植物研发中心对外发布消息称,由他们共同发起的科研团队,在菊花全基因组计划获重大进展的同时,还完成了重要的药用菊花品种——杭白菊的全长转录组遗传信息发掘。此举使我国成为世界上首次完成菊属植物菊花全基因组测序的国家。 研究人员表示,“菊花基因组测序的完成,是本草基因组研究的一个重要里程碑,该工作不仅对研究菊属的物种多样性研究、菊花的遗传进化机制研究和分子育种具有重要的意义,而且对研究具有重要药用价值的多倍体药用菊花——杭白菊具有重大的参考价值。” 面对菊花的复杂染色体遗传结构以及丰富的种质资源多样性,进行菊花基因组测序对于揭示菊属物种的起源进化及物种多样性具有重要意义。对此,2016年,中国中医科学院中药研究所和安利植物研发中心共同开启科研攻关,最终利用纳米孔测序技术突破复杂基因组测序,在菊属植物研究中迈出了人类认知的重要一步。 全基因组测序是对未知基因组序列的物种进行个体的基因组测序。全基因组测序能检测个体基因组中的全部遗传信息,其准确率可高达99%。可谓是基因组最为全面的研究方案。全基因组测序工作的完成,好比绘制了一张物种基因地图,对植物来说,科学家可按图索骥,大大缩短育种周期,培育更高产、抗病、美观的优质新品种。 据了解,菊属植物染色体结构复杂,包含从2n=18到8n=72之间的各种染色体组结构。生产上作为菊花茶使用的菊花(以著名的杭白菊为例)是一个复杂的多倍体物种,有多套二倍体亚基组成。菊属植物是一个非常大的种类,包括菊组和苞叶组两大分支,在每一个品种之下又有数量不等的栽培种,具有很高的观赏价值和药用价值。此次完成菊属植物全基因组测序,将有助于培育更具观赏价值,更具药用价值的菊属植物。 而被广泛熟知的野菊花、甘菊、菊花、异色菊等,都属于菊组,该分支植物主要特点为全部总苞片草质,边缘白色、褐色、棕褐色或黑褐色膜质。 面对菊花的复杂染色体遗传结构以及丰富的种质资源多样性,进行菊花基因组测序对于揭示菊属物种的起源进化及物种多样性具有重要意义。对此,2016年,中国中医科学院中药研究所和安利植物研发中心共同开启科研攻关,最终利用纳米孔测序技术突破复杂基因组测序,在菊属植物研究中迈出了人类认知的重要一步。 作为该科研团队成员的中国中医科学院中药研究所博士宋驰表示,他们在全球率先使用纳米孔测序这一最新的测序技术,完成了高等植物中全基因组测序,并克服了之前在二代测序技术时代解决不了的高杂合、高重复基因组组装的难题,此举必将极大推动植物基因组,尤其是药用植物基因组研究的发展,是本草基因组学研究的一项重要突破。 该科研团队透露,相关研究成果和基因组数据自即日起,在中国中医科学院中药研究所官网及安利植物研发中心学术研究网站公布,免费向全世界研究菊花的学术团队和非盈利组织开放。
  • 《 再造基因组编辑系统》

    • 来源专题:转基因生物新品种培育
    • 编译者:Zhao
    • 发布时间:2018-01-09
    • 仅仅数年间,使用 CRISPR(规律成簇间隔短回文重复)/ Cas9 进行基因组编辑在科研上激起了巨浪,该技术使研究人员能够精确而方便地编辑特定的基因。然而,新技术也存在一些缺点,例如在错误的地点切割 DNA,甚至是随机地进行 DNA 编辑。 但是科学家们很快开始将 CRISPR 拉回了正确的轨道,如今创新性的分子特性使它更好地作用并能用于更多类型的细胞。CRISPR 应用的迅速出现意味着艾滋病、癌症、镰状细胞病等其他疾病的临床试验出现了端倪。 今天的 CRISPR 技术对于更多研究者来说也是一个尖端的工具,与其他基因调控方法相比,更适应于未来的医疗应用。“回到 RNA 干扰(RNAi)时代,感觉就像进入了超光速飞船。” 整合 DNA 技术公司的高级副总裁和首席科学官 Mark Behlke 说,该公司提供 RNAi 和 CRISPR 的试剂。“但现在 CRISPR 使它看起来像一个孩子的游戏,实在令人惊讶。” 相比于其他基因编辑方法,如 TALENs(类转录激活因子效应物核酸酶)和锌指核酸酶, CRISPR 更加快捷便宜,也更易于使用,从而快速地被许多领域的科学家所接受。例如,癌症研究人员将包含编码 CRISPR 向导 RNA(guide RNA)和 Cas9 (CRISPR 关联蛋白 9)的质粒 DNA 转入细胞系中,创造出对应不同研究的癌细胞系。 然而斯坦福大学医学院副教授,儿科医生 Matt Porteus 对于 CRISPR 起初有着不同的体验。他说,“每个人都表示 CRISPR 会帮助解决世界上的所有问题,但当我们试图将细胞中的 CRISPR DNA 质粒应用在我们认为重要的治疗中,如造血细胞系或其他原代人类细胞类型,该系统根本不起作用。” 因此,Proteus 实验室研制出的一种在人原代细胞中进行 CRISPR/Cas9 编辑的不同递呈方法, 完全不需要 DNA 质粒。 该方法的变化在于通过核糖核蛋白(RNPs)形式将 CRISPR/Cas9 试剂引入细胞。“研究人员将这些试剂(gRNA 和 Cas9 蛋白)组合起来,给它们 5 到 10 分钟的时间形成复合体,从而合成出 RNPs。” 赛默飞世尔公司合成生物学研发部高级主管 Jon Chesnut 说,“CRISPR RNPs 可通过脂质纳米粒子或电穿孔的方式传递到细胞中。” 虽然 RNP 试剂已被广泛使用,但近些年研究人员对它们的兴趣还停留在 CRISPR 方法的层面。“这是由于早期基于质粒的方法中有大量的 DNA 工具被广泛接受,大家还存在意识的盲区。” Dharmacon 公司(GE 医疗集团的子公司)高级产品经理 Louise Baskin 说。与质粒载体方法相比,无 DNA 的、基于 RNP 的 CRISPR 方法的好处在于没有意外 DNA 的插入,能够降低毒性,对目标效果更好,并且提高了特异性。 这些优点使得无 DNA 的 CRISPR 工具更适合于在治疗中应用。“对我们来说,在原代组织和原代细胞类型中的基因编辑能力是一个巨大的突破。” 加州大学旧金山分校(UCSF)细胞与分子药理学博士后 Judd Hultquist 说。 通过与 Kathrin Schumann(UCSF 医学院微生物学和免疫学博士后)合作,Hultquist 将 Dharmacon 公司 Edit-R 合成 gRNAs 的 RNPs 用在人原发性 T 细胞中,该细胞是艾滋病病毒的主要目标。现在他们正在开发一种基于 RNP 的平台,目标在于寻找能够提高 T 细胞对 HIV 感染抗性的遗传变化。 CRISPR 的核糖核蛋白的使用也彻底变革了模式动物系统(例如秀丽线虫)。对于秀丽线虫而言,CRISPR 是一个真正的游戏改变者。” 华盛顿大学医学研究所副教授 Brian Kraemer 说,他是 IDT 公司的无 DNA CRISPR 试剂的使用者。 将核糖核蛋白注入到线虫性腺区,可以进行生殖细胞的基因组编辑,随后可以分离出具有编辑表型的后代进行后续研究。Kraemer 的实验室利用线虫作为模式去识别蛋白质聚集疾病(如老年痴呆症和肌萎缩性侧索硬化症)的致病机制所需要的基因。 Kraemer 认为,新的 CRISPR 工具将引燃下一代线虫转基因模型,包括定制等位基因,依照实验的目的而改变基因编码蛋白,例如通过改变胞内转运蛋白的靶序列,可以使它定位到一个不同的细胞膜区域。 提高原代细胞(也包括其他细胞)CRISPR 的关键之一,是近期的增强试剂。IDT 公司开发了经过化学修饰的能够在胞内抵抗核酸酶降解的 gRNA。该公司还开发了两个短的 RNA 形式的 gRNAs(就像在原初细菌系统中),能够形成复合体,而不是单一的、更长的 gRNA。MilliporeSigma 公司也计划提供称为 “SygRNAs” 的两部合成 gRNAs。 牛津大学威廉邓恩爵士病理学院的基因组工程平台负责人 Joey Riepsaame,采用 IDT 公司的 Alt-R CRISPR/Cas9 RNP 系统来辅助进行基因编辑实验。Riepsaame 称赞 IDT 公司的两步合成 gRNAs,能够减少诱发不必要的免疫反应。“这对我来说是一个非常重要的因素,因为我的项目涉及到使用 CRISPR/Cas9 纠正免疫细胞中疾病诱发的突变。” 他说,“到目前为止,我们还没有在 CRISPR/Cas9 中遇到任何重大的挑战,并且能够靶向到每个感兴趣的区域。” 优化的 CRISPR 试剂,如 RNPs 也给研究人员提供新的机会。以 DNA 为基础的 CRISPR(甚至 Cas9 的信使 RNA)的一个问题,是在开始编辑前存在一个滞后阶段,这期间细胞机制会转录和 / 或翻译活性 CRISPR 试剂。例如,将基于 DNA 或 mRNA 的 CRISPR 试剂注射进胚胎中时,结果能够产生一种称为 “镶嵌体”,也就是具有超过一种的遗传信息的动物。“RNP 的方法能够降低镶嵌现象,因为它的试剂在引入的同时就被激活,在编辑后快速降解,同时对于降低脱靶效应也有好处。” IDT 公司的 Behlke 说。 其他的新工具,包括用于将 CRISPR 试剂更好的传递到细胞中的转染试剂。MTI-GlobalStem 公司新的 EditPro 干细胞转染试剂能够将 CRISPR 工具传递到细胞中,而他们的 EditPro 转染试剂能够传递进人类原代细胞以及细胞系。“新的 EditPro 转染试剂依照 mRNA 的量,具有广泛的可调节剂量。”MTI globalstem 公司科学总监 James Kehler 说 除了优化 CRISPR 试剂,研究人员也正在以新的、创造性的方式来使用 CRISPR/Cas9 系统。例如,去除 “剪刀” 功能的 Cas9 变成一种有效的分子靶向的工具,可以将附加效应分子靶向到基因组的特定区域。不同的效应分子,如激活子、抑制子或者修饰子也已经被研究。MilliporeSigma 公司的 dCas9-p300 激活子就是一个融合了 p300 组蛋白乙酰转移酶结构域的非切割版本的 Cas9。一经结合,该激活子能够使附近的组蛋白乙酰化,为增强和持续的基因表达打开了染色质。 尽管基于 RNP 的 CRISPR 技术在近期大获成功,在用于功能筛选时,基于质粒技术还是存在一席之地。为了鉴定引发疾病的基因,一些公司提供了基于慢病毒 CRISPR 的基因敲除文库。美国西北大学费因伯格医学院小儿神经外科副教授 Simone Treiger Sredni 近期利用赛默飞世尔科技公司的 LentiArray CRISPR 文库去筛选 160 种影响细胞增殖的激酶的突变。Sredni 研究主要集中在寻找与儿童非典型畸胎样 / 横纹肌样瘤(atypical teratoid/rhabdoid tumors ,AT/RTs) 的治疗方案,这是一种侵入性和致死类型的儿童脑瘤。 Sredni 在一些特定的激酶中筛选了一致的突变,能够减少 AT/RT 细胞系的细胞增殖。她说,“其中一种激酶的抑制剂能够与缺失基因产生同样的效应,使得肿瘤不再生长。” 她也观察了利用高通量的基因表达平台进行的筛选,“这个基因从此不起作用了,因为它的表达水平是非常低的。” 接下来,Sredni 将研究抑制剂在小鼠移植瘤中的效应。 MilliporeSigma 公司还提供了基于慢病毒的,用于全基因组筛选 CRISPR 工具。通过与惠康基金会桑格研究所合作,MilliporeSigma 最近还为人类和小鼠的基因组构建了阵列式的全基因组 CRISPR 文库的,提供的格式、传递方式和范围(即单基因、基因家族,或整个基因组)都很灵活。 安捷伦公司日前也发布了集合性 CRISPR 筛选指导库,包括通过慢病毒载体传递的 CRISPR 基因敲除文库,包括了人类和小鼠的基因组尺度。为了获取充分的灵活性,安捷伦还提供了前扩增和不扩增的用户定制文库。“我们的 CRISPR 集合库利用 CRISPR/Cas9 在整个基因组上进行敲除,在功能筛选中被广泛使用。”安捷伦公司分子和合成组诊断和基因组生物学全球营销总监 Caroline Tsou 说,“通常这种敲除用来确定参与的细胞反应的基因,如信号转导通路,或发现新基因的功能。”安捷伦还提供长达 230 个碱基对的定制化的寡核苷酸,能给研究者 “探索文库其他用途的自由。” 她说。 但有时当细胞在被迫表达细菌核酸酶时,状态都不是太好。Dharmacon 公司的 Edit-R 诱导慢病毒 Cas9 系统对于那些不愿意在稳定细胞系中长时间含有核酸酶的研究人员来说,是 “一个很好的妥协。” 巴斯金说。“诱导系统发挥了最好的一面,因为当准备使用向导 RNA 处理细胞时,他们可以开启核酸酶的表达,得到充分表达的 Cas9,随后在完成切割后再将它关闭。” 与此同时,各种各样的 CRISPR 试剂已经为了对抗疾病准备就绪,特别是使用无 DNA 的方法。比如,RNP 方法的快开、快关的特性非常适合治疗性应用,CRISPR 试剂可以定向切割随后迅速降解。 但是纠正基因缺陷并不像敲除基因那么容易,因为通常行使功能的基因也必须被引入到正确的位置上。位于斯坦福的 Porteus 实验室最近发表了概念验证的 CRISPR RNPs,用于靶向β- 球蛋白基因,该基因的突变导致镰状细胞病。他们发现 CRISPR 可以修正这种疾病患者的人类造血干细胞中的β- 珠蛋白基因缺陷。此外,在加州大学伯克利分校的一个实验室独立地完成了一个类似的 CRISPR 编辑β珠蛋白基因的结果,使用稍微不同的方法来进行基因修正。 综合起来,这些工作给即将进行的人体临床试验带来了福音。2016 年 6 月,美国国立卫生研究院在美国批准的第一个临床试验,将使用 CRISPR 编辑人类 T 细胞帮助改善癌症治疗,预计该实验要持续到 2017 年。 同时,Porteus 实验室正在着手将 CRISPR 编辑的细胞用在病人身上,他们期望能在 2018 年开始临床试验。他们可能首先针对镰状细胞病,其次是严重的联合免疫缺陷(SCID)。Porteus 实验室不仅希望利用 CRISPR 修正突变,同时能够给细胞增加新的特性,从而可以治疗疾病,“例如抗 HIV 的免疫系统,或创建能够传递蛋白质到脑部的细胞。” 他说。“在科学和医学的生态链中,我们觉得自己的角色应该是将这些技术带给病人。” 随着 CRISPR 研究工具的飞速发展,以及将于近期开始的临床试验,我们与目标的距离可能比想象中更近。