《ESO的观测揭示了宇宙黎明时黑洞的早餐》

  • 来源专题:生物安全网络监测与评估
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-12-25
  • 天文学家使用欧洲南方天文台的超大望远镜观测到宇宙中一些最早星系周围的冷气层。这些气体晕是这些星系中心超大质量黑洞的完美食物,它们现在被认为是超过125亿年前的样子。这种食物储存也许可以解释为什么这些宇宙怪物在宇宙历史上被称为宇宙黎明的时期长得如此之快。

    “我们现在能够证明,第一次原始星系有足够的食物在他们的环境中维持超大质量黑洞的增长和激烈的恒星形成,”埃保罗·法里说,海德堡马克斯-普朗克天文研究所的德国,领导这项研究发表在《天体物理学杂志》上。“这为天文学家正在构建的宇宙结构是如何在120多亿年前形成的这个谜题增加了一个基础的部分。”

    天文学家一直想知道,超大质量黑洞是如何在宇宙历史的早期发展到如此之大的。法里纳说:“这些早期怪物的存在是一个大谜团,它们的质量是我们太阳质量的数十亿倍。这意味着第一个黑洞,可能是由第一批恒星的坍缩形成的,一定成长得很快。但是,到目前为止,天文学家还没有发现足够多的“黑洞食物”——气体和尘埃——来解释这种快速增长。

    更复杂的是,先前对ALMA的观测,即阿塔卡马大型毫米/亚毫米阵列,揭示了这些早期星系中大量的尘埃和气体,它们加速了恒星的形成。这些阿尔玛的观测结果表明,黑洞的食物可能所剩无几。

    为了解开这个谜团,法里纳和他的同事们使用位于智利阿塔卡马沙漠的ESO超大望远镜上的MUSE仪器来研究类星体——由位于大质量星系中心的超大质量黑洞提供能量的极其明亮的物体。这项研究调查了31个被认为是超过125亿年前的类星体,当时宇宙还处于婴儿期,只有大约8.7亿年的历史。这是类星体在宇宙早期历史中最大的样本之一。

    天文学家们发现,12个类星体被巨大的气层所包围:从中心的黑洞向外延伸10万光年的冷而稠密的氢气晕,其质量是太阳的数十亿倍。来自德国、美国、意大利和智利的研究小组还发现,这些气体晕与星系紧密相连,为维持超大质量黑洞的生长和恒星的形成提供了完美的食物来源。

    这项研究之所以成为可能,要归功于多单元光谱探测仪MUSE对ESO的VLT具有极高的灵敏度。法里纳表示,这是类星体研究中的“游戏规则改变者”。他补充道:“在每一个目标几小时内,我们就能够深入到年轻宇宙中存在的最庞大、最贪婪的黑洞的周围。”虽然类星体很明亮,但它们周围的气层却很难观察到。但是缪斯望远镜能够探测到光环中微弱的氢气辉光,这使得天文学家们最终能够发现在早期宇宙中为超大质量黑洞提供能量的食物储藏。

    在未来,ESO的超大望远镜将帮助科学家揭示更多关于大爆炸后最初几十亿年的星系和超大质量黑洞的细节。“有了ELT的力量,我们将能够更深入地探索早期宇宙,找到更多这样的气体星云,”法里纳总结道。

    ——文章发布于2019年12月19日

相关报告
  • 《探索黑洞的“光” | 2020诺贝尔物理学奖授予黑洞研究者》

    • 来源专题:科技大数据监测服务平台
    • 编译者:zhoujie
    • 发布时间:2020-10-13
    • 原文作者:Elizabeth Gibney & Davide Castelvecchi 数学物理学家Roger Penrose与Andrea Ghez、Reinhard Genzel共同获得了诺贝尔物理学奖,后两位科学家在银河系中心发现了一个特大质量黑洞。 2020年诺贝尔物理学奖被授予一位数学物理学家和两位天文学家,表彰他们关于黑洞的发现。黑洞是宇宙中质量最大、最神秘的天体。 奖项的一半被授予英国89岁的数学物理学家Roger Penrose,他用理论证明了爱因斯坦的广义相对论能推导出黑洞的存在——黑洞的引力大到连光都无法逃逸。 1000万瑞典克朗(110万美元)奖金的另一半被授予55岁的美国天文学家Andrea Ghez和68岁的德国天文学家Reinhard Genzel,两人在银河系中心发现了一个特大质量的致密天体,这也是最为人熟知的黑洞。 Roger Penrose、Andrea Ghez和Reinhard Genzel(从左至右)因为关于黑洞的研究获得了2020年诺贝尔物理学奖。来源:David Levenson/Getty, Christopher Dibble, ESO/M. Zamani 从上世纪90年代开始,Ghez和Genzel便各自领导团队,绘制银心附近的恒星运行轨道。他们从研究中得出结论:必然存在一个质量极大、不可见的天体控制着这些恒星毫无章法的运动。负责颁发该奖的瑞典皇家科学院表示,这个名为人马座A*(Sagittarius A*)的天体是迄今证明银心存在特大质量黑洞的最有力证据。 “物理学巨擘” 米兰比科卡大学的天体物理学家Monica Colpi认为三位得奖者实至名归。“Genzel和Ghez的观测数据极其出色,他们观测恒星绕该天体运动的能力也是独一无二的。”他们的数据证明了人马座A*的密度与特大质量黑洞是一致的。 天体物理学家Heino Falcke也表示赞同。“他们为证明星系存在这些黑暗中心做出了奠基性贡献。”荷兰拉德堡德大学的Falcke说。 Penrose是“理论物理学的一位巨擎”,影响了一代代科学家,英国巴斯大学天体物理学家Carole Mundell说。他是“真正有创造力的思想家,他从事的每一件事都充满了无边的想象力、乐趣和强烈的好奇心。”她说。 加州大学洛杉矶分校的Ghez是第四位获得诺贝尔物理学奖的女性——这是女性得奖人数最少的诺贝尔奖项(见“诺贝尔奖得主男女不均”)。2018年,加拿大滑铁卢大学的激光物理学家Donna Strickland成为第三位获得诺贝尔物理学奖的女性,在她之前的55年里,无一女性获得此奖。 “作为第四位获得诺贝尔[物理学]奖的女性,我非常认真地对待这份责任。我希望能激励更多的年轻女性进入这个充满乐趣的领域。”Ghez在新闻发布会上说。 从广义相对论到几何 在1965年的一篇开创性论文中,Penrose从广义相对论出发,证明了黑洞可以在正确的条件下形成——这里的条件是指形成一个能捕获光的界面。在这个界面内,质量会发生不可逆的引力坍缩,产生一个能量密度无限大的区域,即奇点(singularity)。此前的研究人员曾发现,这种必然的结局只能在物理学上不成立的条件下出现。 Penrose的贡献横跨好几个数学和物理学领域。他与图形艺术家M. C. Escher的交流启发他画出了一些不可能的几何物体。上世纪70年代,他开创了一套几何理论:一种非周期性的二维密铺,如今被称为Penrose平铺(Penrose tilings)。2011年摘得诺贝尔化学奖的“准晶体”(quasicrystal)天然拥有这种密铺排列。 Penrose将非常巧妙的数学方法融入了多个物理学分支,目前正在和Penrose合作的加州理工学院数学物理学家Matilde Marcolli表示。“这是一种全新的思考方式。”她说。 60年代末,Penrose提出了“扭量空间”(twistor spaces)理论,尝试让广义相对论和量子力学完全相容,巴基斯坦拉合尔政府学院大学的数学物理学家Asghar Qadir说。扭量空间会改变时空的根本性质。“他提出的想法是,不要把时空看作某种存在的基础,而是一种新出现的事物。”Qadir在博士期间曾跟随Penrose研究扭量理论。 此外,这位数学物理学家曾与已经过世的霍金合作,对奇点开展了进一步的基础性研究。“我的感受是,给Penrose颁奖等于间接给霍金颁奖,这是在嘉奖两人及其团队对黑洞现象的理论物理学解释做出的巨大贡献。”德国科隆大学的天体物理学家Andreas Eckart说。 黑暗中心 如果说Penrose为黑洞的存在奠定了理论基础,那么Ghez和Genzel的团队就是用有力的实验证据证实了银河系的中心就有这么一个黑洞。 早在上世纪60年代,天文学家就开始怀疑大部分星系中心都有一个特大质量黑洞——质量超过太阳的100万倍。银河系自然是研究首选。射电观测已经揭示了银心的人马座A*天体会释放出高能辐射。其他观测结果显示银心布满了恒星,气体高速流动。 Reinhard Genzel团队观测结果的延时视频,显示了这些恒星在20年的时间里如何绕银河系中心的黑洞运行。来源:ESO/MPE 但是,近距离观测这些恒星却是个挑战,因为气体与尘埃会遮蔽来自恒星的辐射。90年代开始,互为竞争对手的Ghez团队和Genzel团队,利用世界上几台最大的望远镜——分别是夏威夷莫纳克亚山的凯克天文台和智利帕拉纳尔的甚大望远镜——以及前沿的观测技术,突破了观测挑战。 其中的关键是,他们找到了在微弱光线下提高分辨率和灵敏度的方法,Genzel团队的前成员Eckart说。两个团队先利用斑点成像法,通过快照采集数据,修正地球大气造成的图像不清。随后,两个团队采用自适应光学技术,这种技术利用一块镜面矫正畸变,从而延长曝光时间,增加进光亮和灵敏度,还能让研究人员在三维空间中追踪恒星运动。 几十年来,两个团队利用这些技术测量了成千上万个靠近银心的恒星,并绘制了约30个恒星的运行轨道,最终将这个黑洞的质量确定在约400万倍的太阳质量,并对其大小的上限达成了一致。 Eckart认为,银河系中心存在特大质量黑洞的结论,是团队合作以及“许多论文和项目”不断积累的结果。目前仍在与Genzel合作的Eckart表示,Genzel的刻苦勤奋是众所周知的,“他力求简明,是位非常出色的科学家。”而根据《自然》2013年的一篇人物特写(https://www.nature.com/news/astronomy-star-tracker-1.12622),Ghez对高强度的工作也是甘之如饴,全身心付出。“她非常专注,解决问题的办法很直接。”Eckart补充道。 原文以 Physicists who unravelled mysteries of black holes win Nobel prize为标题发表在 2020年10月6日的《自然》新闻版块。Nisha Gaind和Holly Else亦为本文提供了额外报道。 © nature doi: 10.1038/d41586-020-02764-w
  • 《美国宇航局绘制银河系内部地图,发现宇宙“拐杖糖”》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-12-26
    • 由Goddard-IRAM超导2毫米观测仪(GISMO)绘制的微波数据(绿色)与红外(850微米,蓝色)和无线电观测(19.5厘米,红色)相结合的发射源。在恒星形成的初期,冷尘埃呈现蓝色和青色,例如人马座B2分子云复合体。黄色显示出更发达的恒星工厂,如人马座B1云。红色和橙色表示高能电子与磁场的相互作用,如射电弧和人马座A的特征。一个叫做镰刀的区域可以提供负责使无线电电弧发光的粒子。在明亮的人马座A里,存在着银河系的巨型黑洞。这幅图像跨越了750光年的距离。 资料来源:美国宇航局戈达德太空飞行中心 在这张银河系中心地带的彩色合成图像的中心出现了一个类似甘蔗的特征。但这不是宇宙糖果。它跨越190光年,是一组发射无线电波的细长电离气体丝之一。 这张图片包含了最新发表的观测结果,使用的是马里兰州格林贝尔特NASA戈达德太空飞行中心设计和制造的仪器。该仪器被称为Goddard-IRAM超导2毫米观测者(GISMO),与位于西班牙皮科韦莱塔的30米射电望远镜配合使用,该射电望远镜由总部位于法国格勒诺布尔的射电天文研究所操作,其毫米范围内。 “GISMO观测到的微波波长为2毫米,这使我们能够探索位于红外光和长波射电之间过渡地带的星系,”巴尔的摩约翰霍普金斯大学的天文学家约翰内斯·斯塔格恩(Johannes Staguhn)说。“光谱的每一部分都由不同类型的发射主导,而GISMO向我们展示了它们是如何联系在一起的。” GISMO探测到银河系中心最显著的射电灯丝,被称为射电弧,它形成了宇宙棒棒糖的直线部分。这是观察到这些奇怪结构的最短波长。科学家们说,这些细丝勾勒出了银河系中心某个高能事件产生的一个大气泡的边缘,这个大气泡位于人马座明亮区域内,距离我们约27,000光年。图像中额外的红色弧线显示了其他细丝。 马里兰大学巴尔的摩分校和戈达德分校的研究小组成员理查德·阿伦特说:“在GISMO的数据中发现无线电弧真是个惊喜。”它的发射来自在磁场中高速旋转的电子,这个过程被称为同步加速器发射。GISMO发现的另一个特征,叫做镰状体,与恒星的形成有关,可能是这些高速电子的来源。” 描述这幅合成图像的两篇论文,一篇由阿伦特领导,另一篇由斯塔格恩领导,发表在11月1日的《天体物理学杂志》上。 这张图片展示了我们星系的内部,它是银河系中最大、密度最大的巨型分子云集合。这些巨大、凉爽的云层中含有足够的稠密气体和尘埃,足以形成数千万颗像太阳一样的恒星。这幅图覆盖了天空的一部分,宽约1.6度,相当于月球表面大小的三倍,宽约750光年。 为了制作这张图片,该团队在2012年4月和11月获得了GISMO的数据,以绿色显示。然后,他们利用欧洲航天局(European Space Agency)赫歇尔(Herschel)卫星的存档观测数据,对冷尘埃的远红外辉光进行建模,然后从GISMO的数据中减去这些数据。接下来,他们用蓝色补充了现有的850微米的红外数据,这些数据来自夏威夷Maunakea山顶附近的James Clerk Maxwell望远镜上的SCUBA-2仪器。最后,他们用红色标注了来自国家科学基金会的Karl G. Jansky甚大阵列(位于新墨西哥州Socorro附近)的长波长19.5厘米的无线电观测资料。然后对高分辨率的红外和无线电数据进行处理,以匹配低分辨率的GISMO观测。 得到的图像本质上是彩色编码不同的发射机制。 蓝色和青色的特征揭示了分子云中的冷尘埃,那里的恒星形成仍处于初级阶段。黄色的特征,如构成拐杖柄的拱形细丝和人马座B1分子云,揭示了电离气体的存在,并显示出发达的恒星工厂;这种光来自于被气体离子减慢但不被捕获的电子,这个过程也被称为自由-自由发射。红色和橙色区域显示了同步辐射发生的区域,比如著名的射电弧和人马座A,这是银河系中心的亮源,那里有超大质量黑洞。 ——文章发布于2019年12月18日