《宁波材料所在MXene/Graphite异质结构吸波材料研发方面取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-04-19
  • 二维层状过渡金属碳化物纳米片(MXene)材料由美国Drexel大学的Michel Barsoum和Yury Gogotsi教授团队首次发现,其所具有的高比表面积、良好的导电性和亲水性,使该类材料在储能、催化、压敏、柔性器件及功能增强复合材料等方面拥有广阔的应用前景。其中,Ti3C2材料由于其类金属特性与高电导率,表现出了十分优异的电磁屏蔽效能。然而,MXene材料的吸波性能却并不理想,这主要与该类二维材料和电磁波的相互作用机制与阻抗匹配能力相关。研究表明,通过对吸波材料进行表面改性以及对其微结构进行特殊设计,能够有效诱发界面极化、多重反射吸收等电磁波损耗机制,进而显著提升该类材料的吸波性能。因此,开展对MXene微观结构的设计是开发出新颖的轻量化、宽频带、高吸收率吸波材料的有效途径。

      近期,宁波材料所核能材料工程实验室(筹)的研究人员利用二维纳米材料c平面高导电的特性,设计制备了具有c平面取向相互垂直的MXene/Graphite异质结构特征的纳米吸波材料。通过以鳞片石墨(Graphite)为模版,利用低温熔盐合成技术,首先合成出Graphite/TiC/Ti3AlC2(G/TiC/Ti3AlC2)复合结构;随后对Ti3AlC2中的Al元素进行选择性刻蚀,并得到了Graphite/TiC/Ti3C2(G/TiC/Ti3C2)异质结结构。微结构分析表明,G/TiC/Ti3C2异质结中的Ti3C2纳米片,其c平面均竖直生长在Graphite/TiC基底上,形成了类似鱼鳞结构的纳米构筑。其相关性能测试显示,具有鱼鳞结构的G/TiC/Ti3C2表现出了较高的介电损耗和吸波能力:G/TiC/Ti3C2在X波段(8-12GHz)的最低反射系数可达-63dB,有效吸波带宽可达3.5GHz,其吸波性能远优于单相Ti3C2的MXene材料。另外,研究人员发现通过简单混合方式所获得的MXene/Graphite材料均不能达到吸波增强效果。

      进一步分析表明,由于Graphite、TiC和Ti3C2在电子能带结构与介电性能方面的差异,在Graphite/TiC/Ti3C2界面处能够形成了大量的纳米界面异质结,进而阻碍电子在复合结构中的有效迁移。在电磁波的作用下,二维材料表面激发出的大量电荷在界面异质结处聚集,形成空间电荷极性区;该空间电荷极性区能够对电子迁移形成散射效应,从而显著增强电磁波功率在该复合材料上的耗散。

      另外,鳞片状结构实现了Graphite和MXene二维材料的高导电c平面相互垂直,从而能够实现最大效率的同电磁波相互协同作用。以上工作不仅为设计制备应用于电磁波吸收的MXene纳米复合材料提供了一种全新的策略,也对MXene纳米复合材料在储能、催化等领域的设计制备具有一定的启示作用。相关工作发表在Adv. Electron. Mater. (DOI:10.1002/aelm.201700617)上。

  • 原文来源:http://www.nimte.ac.cn/news/progress/201804/t20180418_4998656.html
相关报告
  • 《宁波材料所在LED用稀土发光材料研究方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2017-12-26
    • LED固态照明器件具有高效、节能、环保等优点,经过十多年发展已基本取代传统白炽灯、荧光灯而成为新一代照明光源。荧光粉具有波长转换功能,在决定LED白光性能如显色指数、色温、效率等方面起着重要作用,是LED照明器件的关键材料之一,研发效率高和热稳定性较好的荧光粉一直是人们追求的目标。   宁波材料所所属二级所先进制造所的光电功能材料与器件团队研发出一种新型硅酸盐青色荧光粉;在160℃时,其荧光量子效率可维持室温的94%,表现出良好的热稳定性。该研究获国家发明专利一项(ZL201410545720.6),相关结果发表于Advanced Optical Materials(2015, 3(8), 1096-1101,入选封面文章)。   随后,该团队围绕材料,利用量子剪裁和共振能量传递效应,获得了一种发光效率高达144%的绿色荧光粉,实现了可见光量子剪裁(J. Phys. Chem. C 2016, 120, 2362-2370);首次观察到的异常红光发射,采用低温光谱手段追溯到了红光来源(Inorg. Chem. 2016, 55, 8628-8635);在此基础上,通过共掺获得了单一白光。获国家发明专利一项(ZL201510780416.4),相关基础研究结果发表于J. Phys. Chem. C 2015, 119, 24558-24563;Materials Research Bulletin 2016, 80, 288-294。   近期,该团队通过理论和实验相结合,在基青色荧光粉发光性能调控方面开展了系统研究。通过工艺优化,荧光内量子效率提升至90%,85℃/85%RH条件老化1600小时以上的光衰小于10%。仅采用该青色荧光粉与红粉复合,即可在NUV芯片上获得显色指数90以上的白光。基于对第一性原理电子结构计算和理解,结合光谱学的实验表征手段,该团队提出一种计算宽带隙无机非金属材料基体带隙的方法,并揭示了材料发光的热稳定性机理,除了热和声子相互作用可引起发光猝灭外,由热引起的材料吸收率下降是导致发光材料热猝灭的另一个原因。相关结果发表于J. Mater. Chem. C(2017, 5, 12365-12377,入选封面和热点文章)。   团队还将黄色余辉荧光粉稳态荧光内量子效率提升至82%,这为解决交流LED频闪问题提供了一种具有潜在价值的稀土发光材料。相关内容申请国家发明专利2项(2016112538620, 2016112538762),部分研究结果发表于Chem. Commun.(2017, 53, 10636-10639)并入选该期刊封底文章。   以上工作获伦敦布鲁内尔大学Jack Silver教授、中国科学院长春光机所张家骅研究员、日本国立材料研究所/厦门大学解荣军研究员、工信部广州电子五所徐华伟高工的支持,并获国家自然科学基金(NSFC11404351)、浙江省公益技术基金(LGG18E020007)、宁波市自然科学基金(2014A610122,2017A610001)的资助。
  • 《宁波材料所在强耦合研究方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-06-19
    • 强耦合是存在于两个以上系统中相互作用的自然现象。当强耦合产生时,其系统在某些方面的特性与原始特性相比将会出现巨大差异,例如光学响应、电学响应与振动响应都会在强耦合时发生明显的改变。由于现阶段缺乏对此类现象的深入研究,导致其很难充分在实际问题中得到应用。但强耦合现象时材料特性产生的诸多变化有着很大的应用潜力,例如目前有研究表明利用强耦合现象可以对生物科技材料的化学反应速率与荧光光谱特性进行改性,从而满足所需的要求。   中国科学院宁波材料技术与工程研究所所属慈溪医工所Remo课题组与意大利技术研究所(IIT),路易斯安娜州立大学(美国)和中国吉林大学多方展开合作,通过研究改变J-聚合体中(两部分组成)一部分的浓度对强耦合现象的作用,深入了解了强耦合的作用机理。具体来说,研究者通过遵循静态和动态的研究方法,得到了达到Rabi分裂(高耦合强度)的最优条件。此项研究成果对将强耦合现象由基础科学转化为应用科学有着重要的意义,并为后续的研究提供了指导性的意见。该研究中,由动态分析方法得出的结果表明,建立一套完整的、可预计此类系统特性随时间变化的模型对强耦合现象的应用至关重要。   图1展示了在纳米结构器件与J-聚合体分子之间发生的强耦合现象。图1(左)为纳米结构器件的SEM图像,可以看出在金板表面规律排布着纳米孔(标尺为310 nm);图片中还包含了器件的示意图,纳米器件与J-聚合体分子具有相似的波长响应(约为630 nm);J-聚合体吸收峰与吸收峰强度随浓度的变化规律为,峰位均在630 nm周围,吸收峰强度随浓度的提高而增加)。图1(右)为J-聚合体与纳米器件组合后的吸收光谱图,可以看出,材料本征的吸收峰消失,新出现的吸收峰在570-600 nm与650-700 nm之间,吸收峰位置随聚合体浓度提高而发生更强的分裂。近年来,对于此种分裂的增强机理的研究逐渐成为热点。此项研究成果将为后续的研究提供指导性的意见。   该成果已发表在学术期刊Nanoscale上(IF=7.4)。标题为“The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays”(DOI:10.1039/C6NR01588C)