《英特尔公司展示最新含800万神经元的类脑芯片系统》

  • 来源专题:集成电路
  • 编译者: shenxiang
  • 发布时间:2019-07-19
  • 正在底特律举办的美国国防部高级研究计划局(DARPA)电子复兴峰会上,英特尔公司展示了其最新的可模拟800多万个神经元的Pohoiki Beach芯片系统。该神经拟态系统的问世,预示着人类向“模拟大脑”这一目标迈出了一大步。

    该全新神经拟态系统包含多达64颗Loihi芯片,集成了1320亿个晶体管,总面积3840平方毫米,拥有800多万个“神经元”(相当于某些小型啮齿动物的大脑)和80亿个“突触”。英特尔介绍说,该芯片系统在人工智能任务中的执行速度要比传统CPU快一千倍,能效可提高一万倍。新形态芯片可在图像识别、自动驾驶和自动化机器人等方面带来巨大技术提升。

    与人脑中的神经元类似,Loihi拥有数字“轴突”用于向临近神经元发送电信号,也有“树突”用于接收信号,在两者之间还有用于连接的“突触”。英特尔表示,基于这种芯片的系统已经被用于模拟皮肤的触觉感应、控制假腿、玩桌上足球游戏等任务。

    对于正在尝试新硬件平台的人工智能研究人员而言,全新神经拟态系统拥有激动人心的前景。除此之外,研究人员正在利用神经芯片来改善假肢适应不平坦地面的方式,并创建可供自动驾驶车辆使用的更准确的数字地图。

    英特尔预测,到2019年底,该公司将推出一个能够模拟1亿个神经元和1万亿个突触的系统Pohoki Springs。该系统将包含768颗芯片、1.5万亿个晶体管。

相关报告
  • 《英特尔神经拟态研究系统达1亿个神经元计算力》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-03-24
    • 英特尔宣布其最新神经拟态研究系统PohoikiSprings可提供1亿个神经元的计算能力。英特尔将向英特尔神经拟态研究社区(INRC)的成员提供这一基于云的系统,以扩展其神经拟态工作来解决更大规模且更复杂的问题。 英特尔神经拟态计算实验室主任MikeDavies介绍称:“PohoikiSprings将我们的Loihi神经拟态研究芯片扩展了750倍以上,同时以低于500瓦的功率运行。当前,一些工作负载在传统架构(包括高性能计算[HPC]系统)上运行缓慢。而PohoikiSprings系统则让我们的研究合作伙伴能够探索加速处理这些工作负载的方法。” PohoikiSprings是一个数据中心机架式系统,是英特尔迄今为止开发的最大规模的神经拟态计算系统。它将768块Loihi神经拟态研究芯片集成在5台标准服务器大小的机箱中。 Loihi处理器的设计思路来源于人脑。与大脑一样,Loihi能用比传统处理器快1000倍的速度和高10000倍的效率处理特定要求的工作负载。PohoikiSprings是扩展Loihi架构的下一步,可用于评估其解决AI问题以及一系列计算难题的潜力。英特尔研究人员认为,与当今最先进的传统计算机相比,神经拟态系统拥有超级并行性和异步信号传输能力,可以在明显降低功耗的同时显著提升性能。 在自然界中,即使是一些最小的生物也能解决极为困难的计算问题。例如,尽管很多昆虫大脑的神经元数目远低于100万个,但它们却能实时视觉跟踪物体、导航和躲避障碍物。同样,英特尔最小的神经拟态系统KapohoBay由两个具有262,000个神经元的Loihi芯片组成,支持各种实时边缘工作负载。英特尔和INRC研究人员展示了Loihi的各种能力,包括实时识别手势、使用新型人造皮肤阅读盲文、使用习得的视觉地标确定方向,以及学习新的气味模式。所有这些功能都只需要消耗数十毫瓦的电能。到目前为止,这些小规模示例显示出极好的可扩展性,当运行更大规模的问题时,Loihi比传统解决方案更加快速高效。这模仿了自然界中从昆虫大脑到人类大脑的可扩展性。 PohoikiSprings拥有1亿个神经元,它将Loihi的神经容量增加到一个小型哺乳动物大脑的大小,这是在向支持更大、更复杂的神经拟态工作负载的道路上迈出的重要一步。该系统为需要实时、动态的数据处理新方法的自主、互联的未来奠定了基础。 英特尔的PohoikiSprings等神经拟态系统仍处于研究阶段,其设计目的并非取代传统的计算系统,而是为研究人员提供一个工具来开发和表征新的神经启发算法,用于实时处理、问题解决、适应和学习。INRC成员将使用英特尔NxSDK和社区贡献的软件组件,通过云访问在PohoikiSprings上构建应用程序。 目前正为Loihi开发的算法示例包括: 约束满足:约束满足问题在现实世界中无处不在,从数独游戏到航班调度,再到快递配送规划。这需要对大量潜在的解决方案进行评估,以找出一个或几个能够满足特定约束的解决方案。Loihi可以通过高速并行探索多个不同的解决方案来加速解决此类问题。 搜索图和模式:每天,人们都会在基于图的数据结构中进行搜索,以找到最佳路径和紧密匹配的模式,例如获取驾驶方向或识别人脸。Loihi已展示出快速识别图中的最短路径和执行近似图像搜索的能力。 优化问题:可对神经拟态架构进行编程,使其动态行为能够随时间的推移对特定目标进行数学优化。此行为可应用于解决现实场景下的优化问题,例如最大化无线通信信道的带宽,或分配股票投资组合,以在目标收益率下最小化风险。 关于神经拟态计算:传统的CPU和GPU等通用处理器特别擅长人类难以完成的任务,如高精度的数学计算。但随着技术的作用和应用范围都在不断扩大,从自动化到人工智能,以及其他更多领域,越来越要求计算机的操作模式趋向于人类,以便实时处理非结构化和有噪声的数据,并不断地适应变化。为应对这一挑战,新的专用架构应运而生。 神经拟态计算是对计算机架构自下而上的彻底颠覆。其目标是应用神经科学的最新见解,来创造作用方式更类似于人脑的芯片而非传统计算机的芯片。神经拟态系统在硬件层面上复制了神经元组织、通信和学习方式。英特尔认为Loihi和未来的神经拟态处理器将定义一种新的可编程计算模式,可满足世界对普及型智能设备日益增长的需求。
  • 《美国IBM公司开发出新型类脑AI芯片》

    • 来源专题:集成电路
    • 编译者:李衍
    • 发布时间:2023-09-22
    • 我们正处于人工智能革命的开端,这场革命将重新定义人类的生活和工作方式。特别是,深度神经网络 (DNN) 彻底改变了人工智能领域,并随着基础模型和生成式人工智能的出现而日益受到重视。但在传统数字计算架构上运行这些模型限制了它们可实现的性能和能源效率。专门用于人工智能推理的硬件开发已经取得了进展,但其中许多架构在物理上分割了内存和处理单元。这意味着人工智能模型通常存储在离散的内存位置,计算任务需要在内存和处理单元之间不断地整理数据。此过程会减慢计算速度并限制可实现的最大能源效率。 IBM 研究中心一直在研究重塑人工智能计算方式的方法。模拟内存计算,或者简称模拟人工智能,是一种很有前途的方法,可以借用神经网络在生物大脑中运行的关键特征来应对这一挑战。在我们的大脑以及许多其他动物的大脑中,突触的强度(或称“权重”)决定了神经元之间的通信。对于模拟人工智能系统,研究人员将这些突触权重本地存储在纳米级电阻存储设备的电导值中,例如相变存储器(PCM) 并通过利用电路定律并减少在内存和处理器之间不断发送数据的需要来执行乘法累加 (MAC) 操作,这是 DNN 中的主要计算操作。对于模拟人工智能处理,IBM表示需要克服两个关键挑战:这些存储器阵列需要以与现有数字系统相当的精度进行计算,并且它们需要能够与数字计算单元以及数字通信结构无缝连接。 据TechXplore网8月22日消息,美国IBM公司又开发出一种新型类脑AI芯片,基于相变存储器的用于深度神经网络推理的 64 位混合信号内存计算芯片。这种新型混合信号芯片的工作方式与大脑中突触相互作用的方式类似,具有64个模拟内存核心,每个核心都托管一组突触细胞单元。同时,该芯片还具有一个转换器,确保模拟和数字信号之间的平滑转换。据IBM公司称,新型芯片在CIFAR-10数据集的测试中实现了92.81%的准确率。该芯片具有较高的能效比,能效可达传统数字计算机芯片的14倍,可大幅降低AI计算的功耗,未来有望满足低能耗、高算力的场景需求。 面对传统通用处理器(包含图形处理器、中央处理器等)效能低下的问题,IBM研究团队提出“模拟内存计算”的方案,通过在自身的存储器上并行执行矩阵-向量乘法,以提供更强的能效。IBM的研究团队基于该方案开发出了一个 14nm 模拟芯片,利用34个大型相变存储器(PCM)阵列,结合了数模转换输入、模拟外围电路、模数转换输出和大规模并行二维网格路由。每个14nm芯片上可编码3500万个PCM,在每权重对应2-PCMs的方案中,可容纳1700万个参数。将这些芯片组合在一起,便能够像数字芯片一样有效地处理真实AI用例的实验。该芯片是在 IBM 的 Albany NanoTech Complex 中制造的,由 64 个模拟内存计算核心(或块)组成,每个核心包含 256×256 的突触单元格交叉阵列。使用该芯片,IBM对模拟内存计算的计算精度进行了最全面的研究,并在CIFAR-10图像数据集上证明了 92.81% 的准确率,是目前报道的使用类似技术的芯片中精度最高的。8位输入输出矩阵向量乘法密度为400Gop/s/mm,峰值达到63Top/s和9.76Top/W,功耗比之前基于电阻式存储器的多核内存计算芯片高出 15 倍以上,同时实现了可比的能源效率。 相关成果以题名“A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference”于8月10日在线发表于《自然-电子》(Nature Electronics)期刊。 参考链接:https://www.163.com/dy/article/IDDS0R940511838M.html https://caifuhao.eastmoney.com/news/20230812113147087316760 https://xueqiu.com/9919963656/149699780 论文链接:https://www.nature.com/articles/s41928-023-01010-1