《我国科研人员突破磁存储材料新技术 可提升信息存储速度和密度》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-01-29
  •   近期我国科研人员突破了原子级平整反铁磁金属单晶薄膜的关键制备技术,使超快速响应超高密度反铁磁随机存取存储器的研制成为可能,有望大幅提升手机、计算机等信息产品运行速度。该研究由北京航空航天大学材料学院磁性功能材料研究团队、华中科技大学物理学院、中国科学院苏州纳米技术与纳米仿生研究所加工平台合作完成,相关成果19日在国际学术期刊《自然》杂志上发表。 

     中国科学院苏州纳米所加工平台团队在此项技术突破中负责器件的微纳加工。众所周知,芯片加工技术是我国面临的关键“卡脖子”技术之一,加工平台团队致力于整合芯片技术创新资源,突破产业发展的微纳加工核心技术,探索形成长效稳定的产学研合作机制。加工平台(http://nff.sinano.ac.cn/)已建成国内功能齐全、工艺能力领先的集器件设计、工艺加工、测试、器件封装和设备研发于一体的多功能技术平台,拥有外延、光刻、化学气相沉积、物理气相沉积、刻蚀、离子注入、减薄、切割、封装、工艺量测及器件性能检测与失效分析等大型微纳加工设备300余台套,可满足微电子、光电子器件、微纳光机电系统、生物芯片和各种传感器的研发(2~6英寸)和小试(8英寸)需求。加工平台已与来自高校、科研院所、企业的科研团队建立了友好合作,开展联合技术攻关、共建研发基地/实验室,助力重大科研突破、加速产品开发和企业成长。加工平台目标是建成具有国际先进水平的、面向国内外开放的纳米科学研究和成果转化的公共技术服务中心。

  • 原文来源:http://www.sinano.cas.cn/news/kyjz/202301/t20230120_6602233.html;https://www.nature.com/articles/s41586-022-05461-y
相关报告
  • 《“高密度存储与磁电子材料关键技术”取得突破》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2018-02-06
    • 阻变存储器、相变存储器、磁存储器、高灵敏度磁传感器和隔离耦合器件等是具有良好应用前景的新型存储和磁电子技术,在移动通信、个人电脑、数码相机、电子标签等领域具有广阔的市场价值。“十二五”期间,863计划新材料技术领域支持了 “高密度存储与磁电子材料关键技术”主题项目。近日,科技部高新司在北京组织专家对该主题项目进行了验收。 该项目开展了与CMOS工艺兼容的阻变与电极材料组合体系研究,研发的TaOx阻变存储器;芯片制造基于中芯国际集成电路制造有限公司8英寸0.13µm标准逻辑生产工艺线,芯片级读取时间达到十纳秒级,写操作电压满足0.13µm或0.11µm技术代标准逻辑工艺IO承受电压;研发了低热导率的新型超晶格相变材料,研发了非对称环状微电极结构相变存储器单元,制备出了相变存储器阵列;开展了磁性隧道结等磁电子材料研究,制备了基于磁隧道结的磁传感器原型器件,完成了基于磁电子材料的具有非易失性锁存功能的双芯和三芯两种单通道数据隔离耦合接口芯片。该项目的实施突破了先进的高密度存储与磁电子材料器件的关键技术,培养了高水平信息存储与磁电子器件研发队伍,对于我国新型电子材料技术与信息产业的发展具有支撑作用。 “十三五”期间,为进一步推动我国材料领域科技创新和产业化发展,科技部制定了《“十三五”材料领域科技创新专项规划》,并将“战略性先进电子材料”列为发展重点之一,重点围绕第三代半导体和微电子材料的研发,着力解决半导体及微电子产业面临的重大共性问题,在核心半导体材料的设计、生产工艺流程的优化以及关键技术的开发等方面形成突破,力争推动跨界技术整合,抢占先进电子材料技术的制高点。
  • 《突破 | 引领人工智能浪潮的新型光存储技术》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-07-01
    • 随着互联网、物联网、云计算以及人工智能的快速发展,我们仿佛置身于一片浩瀚的数据海洋中,生活中新产生的信息、图片亦或是视频,都在不断地对数据海洋进行扩充,永无止境……然而,数据的不断剧增也给人们的日常生活带来了一系列的问题,例如:数据存储容量的不足、硬件的存储密度亟需提升等等。为了更好地存储和管理海量的数据、提高数据存储密度,基于低功率激光束与介质相互作用,使得介质的某种性质(如反射率、反射光极化方向等)发生改变,进而实现信息存储的新型光存储技术吸引了人们的广泛关注。 图1 存储技术的发展示意图:从传统光盘存储到固态硬盘存储,再到新型光存储 如图1所示为存储技术的发展示意图。光存储技术起源于20世纪60年代,经历了CD、DVD以及BD三代产品更新迭代。随后,全固态硬盘(SSD)、硬盘(HHD)等存储技术的快速发展,其存储密度、容量不断增大和成本不断降低,逐渐取代了传统光存储,从此传统光存储市场开始走向衰弱。随着人工智能黄金时代到来,AI大模型训练的需求,数据成为了一种刚需。根据国际数据的预测合作(IDC)2018年,全球数据将增至到2025年为175 ZB,到2035年为2142 ZB。而主流的数据保存方法,例如传统的硬盘和磁带等存储方法,面临着存储寿命和能耗方面的严峻挑战,难以胜任庞大的现实需求。此时,全息光存储技术、多维光存储、超分辨率光存储等新型技术凭借其卓越的离线存储能力、巨大的数据容量和持久的存储寿命,在数据存储领域的重要性日益凸显,同时相关的研究开发也成为了全球相关研究团体及科技公司的关注焦点。 数据存储的未来:新型光存储技术 1994年德国科学家Stefan W. Hell教授提出受激辐射损耗显微技术,首次证明了光学衍射极限能够被打破,并在2014年获得诺贝尔化学奖。突破了传统光盘存储的物理限制,实现更高存储密度、更快读写速度、更长保存寿命和更低能耗的数据存储方案,进而满足大数据时代对海量数据存储的需求,人们也针对全息光存储、多维光存储、超分辨率光存储等新型光存储技术领域开展了一系列的研发攻关,并取得了较为丰硕的成果。 (1) 全息光存储技术 如图2所示,全息光存储技术通过两束激光的干涉现象实现数据存储,可以将二维数据页图案存储在三维体空间中,从而提升存储密度和数据存取速度,在这一过程中,一束激光(信号光束)携带待存储的信息,通过与另一束未携带信息的激光(参考光束)相遇,产生干涉条纹,这些条纹作为信息的光学编码,被记录在特殊的光敏材料上,形成全息图。当需要读取信息时,只需用参考光束照射全息图,即可重建出原始的信号光束,从而恢复出存储的数据。全息光存储技术的现世,立刻引发了科研人员以及产业界的广泛关注,在众多领域都得到广泛的应用。大数据存储领域,在大数据时代背景下,对于存储密度和存取速度的需求日益增长。例如,美国InPhase公司于2001年推出基于角度复用的全息光驱Tapestry。在2006年实现了光驱的容量为300 GB,读写速率为20 MB/s的全息光存储技术。该公司研发的双化学体系的Tapestry材料,经加速老化试验测试,预期在25 ℃环境中,保质期为10年,存档寿命为33年。2017年之后,东京理科大学和广东紫晶信息存储技术股份有限公司联合开发了基于球面波参考光,单臂离轴全息光存储系统。该系统使用50 mm×50 mm的记录介质,其容量约为300 GB。 图2 (a) 全息光存储示意图,(b)全息光学存储机 (2)多维光学数据存储 多维光存储的复用维度、存储光盘及读取原理如图3所示。相较DVD蓝光等二维(2D)光学存储方式,三维(3D)光学数据存储充分利用各向同性材料的体积,可以在材料内部的任何位置存储数据。同时,为了进一步超越存储容量的限制,研究人员在传统空间三维之外探索其他维度,这些维度包括了光的振幅、频率(波长)、相位、偏振以及光波前的其它物理参量等,它们都可以携带和记录信息,涉及了基于双折射、等离子体共振和荧光等光学特性的方法。如图3(a)所示,目前,已经开发出的复用维度包括介质的三维空间、偏振、波长以及光强。其中包括基于金纳米棒的波长、偏振、三维空间复用的五维度光存储,以及基于纳米光栅结构的偏振、光强、三维空间复用的五维度光存储。但受限于材料对光各个参数的响应不同,六维度光存储技术一直未得以实现,另外光的轨道角动量特性虽然已被用在量子存储上,但在数据长效存储上并未得以实现。 例如,韩国和法国的科研团队合作发明了一种在玻璃里用激光“写”数据的技术。这种技术可以在玻璃的不同层上存储数据,就像是在书架的每一层上都放书一样。浙江大学和之江实验室联合团队利用超快激光诱导非晶化相变的局部光学相位调制,在材料表面制造出微小的结构,通过控制这些结构的形状和颜色,就能存储数据。通过图像识别进行高速数据提取,达到了大约1.2 Gb/s,并且准确度高达约99.7%,无需依赖昂贵且复杂的光学分析系统和信号处理过程,有效缓解了多维光存储技术数据读取速度慢的问题。在实际应用中,多维光学存储技术可以应用于海量数据存储、结构色打印、多功能衍射光学元件、矢量全息、多维信息加密等场景,具有广泛的应用前景。 图3 (a) 多维光存储的复用维度示意图,(b) 多维光学数据存储光盘及读取原理 (3)超分辨光学数据存储 光学衍射极限是光学存储技术中的一个关键障碍,它决定了数据存储的最小单元尺寸。为了克服这一限制,科学家们一直在探索新的技术路径。其中,超分辨光学数据存储技术的出现,为我们提供了一种全新的解决方案。这项技术通过创新的光学手段,突破了传统光学衍射的束缚,使得数据存储点的尺寸可以做得更小,从而大幅提升了存储密度。 2015年,李向平、曹耀宇等人运用双光束超分辨技术实现超大容量的光存储,将800 nm飞秒超快光源作为记录光束,375 nm连续激光作为抑制光束,在玻璃基板上实现了最小33 nm的记录点,实现大大提高了存储面密度。目前,最前沿的超分辨光学数据存储技术是上海光学精密机械研究所阮昊研究员团队和上海理工大学顾敏院士联合的一种双光束调控聚集诱导发光超分辨光存储技术,实验上首次在信息写入和读出均突破了衍射极限的限制,实现了点尺寸为54 nm、道间距为70 nm的超分辨数据存储,并完成了100层的多层记录,单盘等效容量达Pb量级,这相当于把一个小型数据中心机柜缩小到一张光盘上,这一成果不仅极大地提高了存储效率,而且对于应对大数据时代日益增长的数据存储需求具有重要的战略意义。