《Science发表中国学者颠覆传统的发现:金刚石不再是钢铁直男,是可以弹性变形的软妹子!》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-04-23
  • 金刚石是最坚硬的天然材料,它也是碳材料类的成员之一,在机械学,生物医学,电子学和光子学领域有着广泛的应用。有研究发现通过调整微观结构可以进一步提高金刚石的强度和硬度。但是,金刚石的机械特性却被可变形性差和脆性较高所限制。如果你设法使金刚石变形,通常意味着你破坏了金刚石。金刚石硬度非常高,但不会弹性变形,这限制了它们在某些应用中的实用性。 这也就是为什么至今一提到金刚石我们都会想到它可以作为模具是最硬的材料,但不会把它跟金属一样的延展性或是跟弹性体一样的弹性联系在一起。

    成果简介

    北京时间2018年4月20日,Science在线发表了香港城市大学张文军、陆洋、麻省理工学院Ming Dao、南洋理工大学Subra Suresh(共同通讯)等人题为“Ultralarge elastic deformation of nanoscale diamond”的文章,研究小组展示了纳米级(?300nm)单晶和多晶金刚石的超大,完全可逆的弹性形变。对于单晶金刚石,最大拉伸应变(高达9%)接近理论弹性极限,相应的最大拉伸应力达到约89至98GPa。在结合系统计算模拟和表征变形前和变形后结构特征之后,研究者将同时存在的高强度和大弹性应变归因于小体积金刚石纳米针与微米级和更大的试样相比缺陷少,以及相对光滑的表面。该发现通过对金刚石纳米结构,几何形状,弹性应变和物理性质进行优化设计,为新应用提供了潜力。

    文献链接:Ultralarge elastic deformation of nanoscale diamond(Science,2018,DOI: 10.1126/science.aar4165)

相关报告
  • 《中国学者发现新型红外隐身材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-04-10
    • 中国科学院苏州纳米所张学同研究员领导的科研团队,最新发现一种红外隐身材料。这种新材料坚固、轻便、可折叠,可以在不需要额外能源的情况下躲过红外探测仪的“法眼”,应用前景广阔。  自然界中的一切物体,都会辐射红外线。物体辐射红外线能力的大小,和其表面温度直接相关。因此无论白天黑夜,红外探测仪都可以测量到目标与背景间的辐射差,得到不同物体的红外图像。现有的红外隐身技术原理通常是改变目标热辐射特性,但这些隐身材料大多有耗能持续、应用范围窄、反应慢等不足。  此次研究中,技术人员想要发明出一种可以适应不断变化的温度,且不需要额外耗能的红外隐身材料。他们首先制造了一种坚固但柔软的纳米纤维气凝胶薄膜,这种薄膜具有优异的隔热性能。将这种薄膜用相变材料聚乙二醇(PEG)浸泡并进行防水处理,就得到一种轻薄、坚固、柔韧,但红外隐身性能优异的复合新材料。  由于纳米纤维气凝胶薄膜本身是一种良好的绝热材料,而聚乙二醇受热时会储存热量并软化,凝固时又释放热量后重新硬化,在模拟太阳光照下,覆盖目标物的复合薄膜可以从太阳吸收热量,达到抑制升温目的,就像周围环境一样,使得目标物体对红外探测仪“隐形”。当夜晚来临,薄膜又能缓慢地释放热量,以匹配周围环境。此外,选用合适厚度的气凝胶薄膜覆盖在发热目标与相变复合薄膜之间,也能做到让发热物体“隐身”。  “新材料不仅可以用于红外隐身,还可以用作电子隔热材料、电池隔膜材料等,我们预测应用前景会非常广阔。”张学同说。  相关研究成果已于近日发表在《美国化学学会·纳米》上。
  • 《碳家族再添新成员!学者发现次晶态金刚石》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-11-26
    • 北京高压科学研究中心研究员缑慧阳等在高温高压条件下合成了一种新形态的金刚石——次晶金刚石(Paracrystalline diamond),填补了非晶结构和晶体结构之间原子排列尺度上的缺失环节,为深层次理解非晶材料的复杂结构提供了密钥。该成果于11月25日在线发表于《自然》杂志。 一般来说,根据是否存在长程周期性,将固体分为结晶态和非结晶态。然而,当晶体中的长程有序度显著降低时,区分这两种状态就变得异常困难,特别是对于强共价和类共价固体。 为了探索这一结构之谜,理论科学家们提出了次晶态结构模型,其本质上是在非晶基体中引入纳米尺寸的中程有序(MRO)结构,即完全由中程有序的次晶组成,又不具有长程有序性。此前,一直未能在自然界或实验中发现这种物质状态。 缑慧阳与合作者通过其在大腔体压机中发展的最新极端高压技术,在30GPa、1500-1600K的温压条件下对富勒烯(C60)前驱体进行高温高压处理发现,压缩的富勒烯聚合转变成为一种高密度无序的sp3键合的碳。高分辨透射电子显微镜显示,样品中存在高密度且均匀分布的类晶体团簇(尺寸为0.5-1.0nm),其原子构型接近于立方和六方金刚石,且具有很高的晶格畸变,即次晶金刚石。 由亚纳米尺寸次晶为主要构成次晶金刚石 图由作者提供 为了探索次晶金刚石的形成过程,研究人员对C60在高温高压条件下结构演变进行了大尺度的分子动力学模拟,建立了与实验结果高度匹配的次晶金刚石模型。模拟结果显示,其合成主要归功于两个因素:一是由于金刚石具有最大的四面体序参量。与非晶硅相比,非晶金刚石在两个原子配位壳层内存在超强的类金刚石短程有序性,这一特征有利于中程有序结构的形成;二是依赖于C60的结构特点,C60向次晶金刚石转变经历了三个主要阶段。 “模拟结果显示,次晶金刚石和非晶金刚石具有显著的结构差异。二者都不具有长程有序性,且在第一个配位原子层,次晶金刚石和非晶金刚石同时具有相似的有序性。然而,在中程尺度范围(2-5原子层),次晶金刚石的有序性虽然在逐步降低,但是有序性远高于非晶金刚石。”该论文的共同通讯作者、美国乔治梅森大学教授生红卫说。 “这种次晶态的发现,在结构拓扑上链接了非晶态和晶态,对于揭示非晶材料复杂的结构本质具有深远意义”,该论文的第一作者、北京高压科学研究中心博士唐虎告诉《中国科学报》,“次晶金刚石的发现为碳材料家族增加了一种新的结构形态,它兼具优异的机械性能、热稳定性以及独特的光学特性,在高端技术领域和极端环境下具有重要的应用前景。有利于进一步开发新型类金刚石材料。”