《多国合作团队实现Feshbach共振态层析》

  • 来源专题:量子信息科技
  • 编译者: 于杰平
  • 发布时间:2023-04-25
  • 2023年4月6日,德国柏林自由大学、以色列魏茨曼科学研究所、瑞士巴塞尔大学、德国马普所、荷兰拉德布德大学研究人员组成的合作团队利用惰性气体原子对氢气分子离子进行碰撞,提出并验证了一种新的方法来探测近阈值的Feshbach共振态。该工作为共振碰撞动力学的量子态映射提供了新的思路,其成果于4月6日发表在《科学》杂志上。


    Feshbach共振在末态分布中具有明显的量子特征。这一特性可能会有助于通过操纵Feshbach态本身的量子状态来控制末态的分布,即通过调节总角动量实现,但实验上这很难控制。一种能够选出各总角动量态的可行方法是利用中性碰撞复合体的不同形状共振(shape resonances),可通过合并束的方法实现。

    论文链接:

    https://www.science.org/doi/10.1126/science.adf9888

    报道链接:

    https://idw-online.de/de/news812474


相关报告
  • 《中国科大在水溶液环境中实现单个生物分子磁共振谱探测》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-10-17
    •         中国科学院院士、中国科学技术大学教授杜江峰领衔的研究团队运用量子技术首次在室温水溶液环境中探测到单个DNA分子的磁共振谱,从而向运用单分子磁共振研究生物分子在生理环境中的构像和分子间相互作用迈出了重要一步。该工作发表在2018年9月出版的《自然-方法》上[Nature Methods 15, 697–699 (2018)],并被选为五篇封面标题文章之一。   磁共振技术能够在溶液环境准确无损地获取物质的组成和结构信息,是目前研究生物分子结构和动力学的最有效的工具之一。然而,传统的磁共振技术受限于探测灵敏度,其研究对象通常为数十亿分子的宏观体系,无法实现单分子的研究。杜江峰团队利用钻石中的氮-空位点缺陷作为量子传感器(以下简称“钻石传感器”),它在绿色激光和特定频率微波脉冲的调制下,形成对磁信号敏感的量子干涉仪,将微弱的磁信号放大为量子相位信号,并利用光学手段进行读出。同时,由于钻石传感器的尺寸在原子量级,可以实现纳米尺度的空间分辨能力。因此,钻石传感器可以实现单个分子探测,并能通过磁共振谱学解析其结构和动力学等信息。   杜江峰团队此前的研究已经表明,基于钻石传感器能够探测单个蛋白质分子的磁共振谱[Science 347, 1135–1138 (2015)],实现了单分子磁共振的首次突破。该实验中的蛋白质分子被生物胶固定在钻石表面。然而,水溶液环境是生物分子保持生物活性并进行生命活动所必须的环境,在水溶液环境中进行单分子的磁共振探测是研究其生物功能的必经之路。杜江峰团队与南加州大学教授覃智峰合作,以双链DNA分子作为探测对象,此DNA分子被放置在钻石表面并填充水溶液以保持其生理状态。首先,为了防止DNA分子在溶液中的扩散,该团队设计了一套化学反应流程,将DNA分子的一条链(下图红色虚线示意)一端通过氨基修饰,化学键合“拴”在钻石表面,这也保证了DNA分子在钻石表面的均匀分布;同时将一种常用的氮氧自由基顺磁标签标记到DNA的另一条链(下图蓝色实线示意),其可以在水溶液中与键合链自由地复合-解链。其次,得益于钻石微纳技术的发展,加工得到钻石纳米柱,同时改进微波操控技术,使得探测效率大幅提升,能够快速测得单分子磁共振谱,信号获取时间从小时量级缩短到数分钟。最终,该团队成功地获取了水溶液环境下单个DNA分子的磁共振谱,并通过谱分析得到其动力学和环境特征信息。通过谱线展宽和仿真计算得到该DNA分子自由基的运动特征时间信息;通过谱线超精细分裂大小得到该DNA分子所处的疏水性环境信息。   该工作为在水溶液环境中研究单个生物分子的结构和功能提供一种新的技术方法,是朝向细胞原位单分子研究迈出的重要一步。以此为基础,和扫描探针、梯度磁场等技术相结合,未来可将该技术应用于生命科学领域的单分子成像、结构解析和动力学检测,从单分子层面理解生物特性和生命功能,具有广泛的应用前景。审稿人评述该工作:“单分子技术是当代生命科学的发展至关重要的一项技术,实现单个DNA分子的探测及其动力学行为研究将引起相关领域科学家很大的兴趣”。   中国科学院微观磁共振重点实验室石发展、孔飞和赵鹏举为该论文并列第一作者,杜江峰和覃智峰为该文通讯作者。此项研究得到科技部、国家自然科学基金委、中国科学院和安徽省的资助。
  • 《中国科大首次实验实现纳米尺度零场顺磁共振》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-07-30
    •         由中国科学院院士、中国科学技术大学教授杜江峰领导的中国科学院微观磁共振重点实验室提出并实验实现了一种基于金刚石氮-空位(NV)色心量子传感器的新零场顺磁共振方法,打破了传统顺磁共振信号强度对热极化的依赖,将零场顺磁共振的空间分辨率从厘米量级提升至纳米级,为零场顺磁共振的实用化开启了一条新途径。该研究成果以Nanoscale zero-field electron spin resonance spectroscopy 为题,发表在4月19日的《自然-通讯》上[Nature Communications 9, 1563 (2018)]。   电子顺磁共振是当代重要的物质科学研究手段。例如,对于自旋标记的生物分子样品,可通过顺磁共振技术获取分子的动力学、结构等重要信息。这些信息主要源于电子自旋的精细和超精细结构,它们均可以从顺磁共振谱中提取。但是由于磁场的存在,不同取向的分子会有不同的共振峰,从而不可避免地会引起谱线的非均匀展宽,使信息的获取变得困难。目前技术发展的一个方向是通过不断提高的强磁场来部分去除这种展宽的影响,但存在技术挑战且成本高昂。而另一种简单直接的方式是不加磁场,此时自旋系统的能级结构只取决于系统的内禀相互作用,不再与分子取向有关,原则上可以完全移除非均匀展宽。这种称之为零场顺磁共振的方法在几十年前就已经提出,但是受探测原理限制,传统顺磁共振谱仪的探测灵敏度依赖于磁场大小,在零场下的探测灵敏度极低,往往需要厘米尺寸的样品量来累积足够大的热极化下的磁信号,极大地限制了零场顺磁共振方法的应用。这导致该方法几十年来止步不前,并未获得广泛应用。   在该工作中,杜江峰团队针对零场顺磁共振目前的困境,另辟蹊径,采用了高灵敏度的金刚石NV色心量子传感器和新颖的量子探测方法,来实现零场顺磁共振。金刚石NV色心是一种固态的自旋量子体系,因其在量子调控方面的优秀性质,在量子计算和量子精密测量方面有着重要的应用前景。尤其是量子精密测量方向,近十年来发展迅猛,已经实现了单个生物分子的非零场顺磁共振(杜江峰团队,Science 347, 1135 (2015))。NV色心量子传感器之所以具备如此超高灵敏度的磁探测能力,一方面是因为NV色心尺寸极小(埃量级),可以将NV色心放置得离待测目标足够近(纳米量级);另一方面是因为NV色心采用量子干涉仪的探测原理,可以将微弱的磁信号转化为量子态的相位信息来读出,灵敏度非常高。基于NV色心的微观磁共振能够达到纳米级的空间分辨率和单个核自旋的高灵敏度,被认为是对传统磁共振技术的革命性突破。   但是,以往使用的基于NV色心的顺磁共振技术并不能直接应用到零场情形,因为它需要对目标自旋进行精确操控,这在零场下十分困难。在该工作中,研究人员提出一种新的方法,用精心设计的微波脉冲连续驱动NV色心,通过改变驱动功率可以连续调控NV的能级劈裂,当其和目标自旋的能级劈裂匹配时会产生共振信号,过程中并不涉及对目标自旋的任何操控。实验上,研究人员成功实现了对NV色心周围15纳米范围内的约4个金刚石内部电子自旋的零场检测,获得了清晰的零场顺磁共振谱,并从中直接提取了目标自旋的超精细常数。   这种新方法避开了非零场下谱线展宽的干扰,可以直接在纳米尺度研究待测目标的能级结构,使得零场顺磁共振技术在单分子尺度上的应用成为可能。之前已经有研究表明,电子自旋标签的超精细常数对分子所处的局域环境的电学性质十分敏感,使用这一方法未来有望在单个分子尺度研究这种局域性质。另外,该方法也可以用于解析电子-电子相互作用,如果在单个分子上标记多个自旋标签,可以实现单分子的结构解析。   中国科学院微观磁共振重点实验室博士生孔飞和赵鹏举为该文并列第一作者,教师石发展和杜江峰为该文并列通讯作者。该研究得到了科技部、国家自然科学基金委、中国科学院和安徽省的资助。