《宁波材料所在弯液面限域电化学直写机制研究中取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-05-02
  • 高质量金属微纳米线阵列在微执行器、微传感器以及透明导电方面有着重要应用,而现有微纳加工技术如光刻、激光诱导沉积、蘸笔纳米直写技术等在金属微纳结构复杂性和物理性能等方面还存在很大的不足。中国科学院宁波材料技术与工程研究所增材制造研发团队围绕弯液面限域电化学沉积(MCED, Meniscus-confined electrodeposition)工艺,系统研究了弯液面内传质和电化学沉积机理,开发了一种新型的电场驱动动态沉积技术,打破了MCED工艺只能在导电基底上沉积线状微结构的限制,使3D微打印微纳功能器件向系统级加工和集成方向发展。

    研究团队在研究的过程中发现了控制动态扫描和沉积过程的新机制,完整的动态电沉积过程由弯液面表面及内部的传质过程和遵守法拉第电解定律的局域电沉积过程协同作用实现。其中,弯液面表面和内部的传质过程还包括复杂的溶剂挥发诱导离子迁移jw和表面张力梯度作用下的反向Marangoni流jp,如图1所示。通过理论分析和实验验证,团队成员获得了控制沉积结构尺寸和形貌的数学模型。

    与此同时,研究人员发现,在不同基底上动态电浸润过程与常规的浸润性呈相反趋势,如图2所示。由于动态电浸润作用,疏水性的金基底沉积线宽明显高于亲水性的玻璃基底。该浸润性也明显影响图1所示的“咖啡环”效应。特别是在较高打印速率下,由于咖啡环效应的发生,在导电基底上微米铜带出现明显的高度波动和滑移,而在非导电基底上则形成串珠状结构。

    通过横向MCED直写制备的铜微米线具有纳米晶结构,具有超高导电率(15700S/cm),远优于通过传统方法如FIB-CVD或静电纺丝等制备的金属线。基于其优良性能,研究人员将制备的铜微米线用作连接线稳定驱动LED灯,开发了横竖向相结合的三维风速传感器演示器件,如图3所示。

    相关工作已在国际期刊上发表( J. Phys. Chem. Lett. 2018, 9, 2380-2387; Nanoscale 2017, 9, 12524-12532)。上述研究工作得到国家自然基金委(No.11574331&11674335)、宁波市科技局(No.2016B10005&2015B11002)等的支持。

    图1 电场驱动动态沉积(弯液面稳定)机制

    图2 动态电浸润测试原理图及在不同基底上的动态接触角

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=177887
相关报告
  • 《宁波材料所在单原子催化领域取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-03-28
    • 金属单原子催化剂因其具有原子级分散的金属活性中心,表现出极其优异的催化活性和最大的原子使用效率。自2011年中国科学院大连化学物理研究所张涛院士提出单原子催化的概念以来,金属单原子催化剂已经迅速成为了催化领域的研究前沿和热点。目前制备金属单原子催化剂的策略主要有液相浸渍、原子层沉积、金属氢氧化物/聚合物核壳结构策略和光电化学策略等。然而,这些方法只适用于特定的某一类金属单原子的制备,并未扩展成普适性的方法。至今金属单原子催化剂的制备仍然是一大挑战,这主要是因为单原子的高表面能导致其容易聚集成纳米颗粒。所以,为了进一步促进金属单原子催化剂的广泛应用,亟需开发先进的制备技术,特别是具有普适性的制备技术。   针对这一现状,中国科学院宁波材料技术与工程研究所陈亮研究员团队基于金属有机框架材料提出了一种普适性的单原子催化剂制备方法:选择具有联吡啶基团的Zr基金属有机框架材料(如UiO(bpdc)),通过后处理修饰方法将金属盐前驱体配位在到联吡啶基团上,然后在惰性气氛下进行碳化并酸刻蚀去除ZrO2纳米颗粒,从而得到金属单原子催化剂。联吡啶具有活泼的N位点,可以将金属离子锚定在有机配体上,有效防止在高温碳化过程金属离子的聚集并在碳化过程优先与N形成化学键。本方法的技术路线简单、具有普适性,且可以避免生成杂相。基于此,林贻超副研究员成功制备了Fe、Co、Ni、Cu等多种单原子催化剂,并通过同步辐射近边吸收与球差电镜等表征方法验证。而近边吸收拟合结果和穆斯保尔谱测试表明该方法所制备的金属单原子配位数为5,与以往文献报导的四配位或二配位金属单原子有较大区别。该研究团队还以Fe单原子催化剂为例,研究了其在电催化氧还原反应(ORR)中的应用。结果表明Fe单原子具有非常优异的ORR性能,在0.1M KOH中,其半坡电位为0.89V,优于商业化Pt/C催化剂;密度泛函理论计算则揭示了Fe单原子的高ORR活性来源于其特殊的五配位结构。   相关结果近日以“Fabricating Single-atom Catalysts from Chelating Metal in Open Frameworks”为题发表在Advanced Materials期刊上(2019, 1808193,https://onlinelibrary.wiley.com/doi/10.1002/adma.201808193)。该工作得到了国家重点研发计划课题与自然科学基金委面上项目的大力支持,同步辐射实验得到了中国科学院上海应物所与上海光源的大力支持,计算部分得到了人工微结构科学与技术协同创新中心高性能计算中心的支持。
  • 《宁波材料所在氧化物类脑神经形态器件研究方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-04-19
    • 人脑中有约个神经元和约个突触连接,突触结构是神经元间发生信息传递的关键部位,是人脑认知行为的基本单元,因此研制人造突触器件对于神经形态工程而言具有重要意义。近年来,类脑神经形态器件正在成为人工智能和神经形态领域的一个重要分支,将为今后人工智能的发展注入新的活力。目前,国际上报道的人造突触器件主要为两端阻变器件和三端晶体管器件。离子液和离子凝胶电解质具有独特的离子界面耦合特性及相关的界面电化学过程,其在神经形态器件和系统方面有着极强的应用前景。   中国科学院宁波材料所功能材料界面物理与器件应用团队在前期工作中,制备了具有室温质子导电特性的固态离子液电解质薄膜,并采用这类电解质作为栅介质制作了具有低工作电压的氧化物双电层薄膜晶体管(<1.5V),相关工作发表于IEEE Electron Dev.Letters,36(2015)799/38(2017)322等。这类室温质子导体还具有极强的侧向离子耦合特性,基于这一特性,设计了具有侧向耦合结构的氧化物双电层薄膜晶体管,克服了传统氧化物薄膜晶体管通常需要采用顶栅或底栅结构的限制,相关工作发表于Appl.Phys.Lett., 105(2014)243508, ACS Appl.Mater. Interfaces.,7(2015)6205等。基于器件的界面质子耦合特性,这类器件在类脑神经形态器件方面有着一定的应用价值,可以实现短时程突触塑性行为、双脉冲异化行为、时空信息整合和超线性/亚线性整合行为等,相关工作发表于Nat.Commu., 5(2014)3158, Appl.Phys.Lett., 107(2015)143502, ACS Appl.Mater.Inter., 8(2016)21770/9(2017)37064等。   最近,该团队及其合作者设计了氧化物神经形态晶体管,实现了对霍奇金-赫胥黎(Hodgkin-Huxley)膜电位行为的模仿。他们首先制备了多孔磷硅玻璃纳米颗粒膜,呈现了室温质子导电特性和双电层耦合行为,薄膜具有不同于传统热氧化SiO2栅介质的充放电行为。三明治结构(MIM)电容经过电流充电后,其电势呈现了短时程塑性行为和非易失性行为(长时程塑性行为)。生物突触通常由突触前膜、突触间隙、突触后膜组成,在膜生物物理中,生物突触膜通常可以采用霍奇金-赫胥黎(Hodgkin-Huxley)膜电位模型加以说明,脂质膜被等价为一个电容CLipid,脂质膜上存在一些离子通道,可以将离子泵和离子通道分别看成电源(En)和电阻(Gn)。而对于离子导体电解质,通常可以简化为电容(C)和电阻(R)的组合电路。因此,氧化物双电层薄膜晶体管与霍奇金-赫胥黎(Hodgkin-Huxley)膜电位模型存在相似之处。他们设计了具有双栅结构的氧化物双电层薄膜晶体管,器件的等效电路图与Hodgkin-Huxley等效电路类似。通过电脉冲刺激,在器件上测试了膜电位响应,包括静息电位、兴奋性/抑制性突触膜电位等。相关研究成果以“Hodgkin–Huxley Artificial Synaptic Membrane Based on Protonic/Electronic Hybrid Neuromorphic Transistors”为题,发表于Advanced Biosystems 2(2018)1700198上(论文链接 https://onlinelibrary.wiley.com/doi/abs/10.1002/adbi.201700198)。   该工作得到了国家自然科学基金委、中国科学院青年创新促进会、浙江省相关人才计划、宁波市科技创新团队等项目的资助。