《美国空间6.5米望远镜处于暗黑环境测试(屏蔽红外光)》

  • 来源专题:天文仪器与技术信息
  • 编译者: zwg@niaot.ac.cn
  • 发布时间:2017-09-18
  • This bunny-suited technician is performing the important task of ensuring no unwanted infrared light interferes with the optical testing of NASA’s James Webb Space Telescope inside of Chamber A at NASA’s Johnson Space Center in Houston.

    Because of the Webb telescope’s extreme sensitivity to infrared light, the shroud was made nearly impervious to outside light sources that could contaminate the testing.

    “One of the challenges of testing an infrared telescope is that room-temperature objects (such as the walls of the vacuum chamber itself, or the warm electronics systems inside it) glow at the wavelengths of light that the telescope is trying to measure,” explained Randy Kimble, a scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who is helping conduct optical testing of the telescope. “If not carefully controlled, that warm glow can provide an unwanted background in the telescope's images, which would compromise the optical testing.”

    The cold gaseous helium shroud inside Chamber A is the innermost of two shrouds used to cool the Webb telescope down to the temperatures at which it will operate while in orbit. This shroud sits inside an outer liquid nitrogen shroud, and the technician in this photo is standing in the space between them. This photo was taken before all of the air was removed from the chamber and it began to cool to cryogenic temperatures.

    The two shrouds are thin, cylindrical, metal shells that work together to lower the temperature of the area in which the telescope sits. They are nested inside the chamber like Russian Matryoshka dolls that sit inside each other. The chamber is the largest “doll,” followed by the liquid nitrogen shroud, the cold gaseous helium shroud, and then the smallest “doll” — the Webb telescope. The liquid nitrogen and cold gaseous helium flow through plumbing that crisscrosses the surface of their respective shrouds.

    Protecting the shroud doors, which give access to the shrouds’ interiors, is particularly important to ensure unwanted infrared light is unable to interfere with the telescope. Kimble said engineers used a layer of black Kapton, a thin, opaque, plastic film ideal for use in a vacuum, to curtain the door into the cold gaseous helium shroud. This Kapton curtain curtails the amount of light that can get into the shroud through the seam around the door.

    The mercury-like, reflective material in the photo is an aluminized polyester sheet that was placed over the black Kapton curtain. The liquid-metal look of that covering and the otherworldly, distorted reflection it gives are partially caused by the amount of play the curtain is required to have. “The Kapton material…shrinks a lot as it cools, so we needed to make sure that it was not taped down so tightly that it would tear during cooldown,” explained Kimble.

    Because of Kimble’s work making sure the test environments at both Goddard and Johnson for the Webb telescope and its instruments were dark enough for optical testing, he is affectionately known as the “Prince of Darkness,” a moniker in which he takes pride. “I like it,” said Kimble. “If the chamber is appropriately dark, then I've done my job.”

    Despite the royal nickname, Kimble stressed it took a team effort to ensure the telescope was properly insulated from outside infrared light in Chamber A. “Many people have worked for years on the test design and implementation to keep infrared light, from warm sources in the test chamber, from getting into the telescope beam,” Kimble explained. “The final visual inspections and blanket closeouts…are just the icing on that well-baked cake.”

    The James Webb Space Telescope is the scientific complement to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

  • 原文来源:https://www.nasa.gov/feature/goddard/2017/keeping-nasa-s-james-webb-space-telescope-in-the-dark
相关报告
  • 《美国6.5米空间望远镜进入测试仓》

    • 来源专题:天文仪器与技术信息
    • 编译者:zwg@niaot.ac.cn
    • 发布时间:2017-09-07
    • NASA's Johnson Space Center’s "Chamber A" in Houston is an enormous thermal vacuum testing chamber and now appears to be opening it's "mouth" to take in NASA's James Webb Space Telescope for testing. The telescope and the Integrated Science Instrument Module (ISIM) are two of the three major elements that comprise the Webb telescope Observatory flight system and are being lifted into the chamber in this photo. The other is the Spacecraft Element (spacecraft bus and sunshield), which is currently under construction at Northrop Grumman Aerospace Systems (NGAS) in Redondo Beach, California. The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
  • 《美国空间6.5米空间望远镜激光聚焦实验》

    • 来源专题:天文仪器与技术信息
    • 编译者:zwg@niaot.ac.cn
    • 发布时间:2017-10-31
    • Though the Webb telescope will focus on stars and galaxies approximately 13.5 billion light-years away, its sight goes through a similar process as you would if you underwent laser vision correction surgery to be able to focus on an object 10 feet across the room. In orbit at Earth’s second Lagrange point (L2), far from the help of a terrestrial doctor, Webb will use its near-infrared camera (NIRCam) instrument to help align its primary mirror segments about 40 days after launch, once they have unfolded from their unaligned stowed position and cooled to their operating temperatures. Laser vision correction surgery reshapes the cornea of the eye to remove imperfections that cause vision problems like nearsightedness. The cornea is the surface of the eye; it helps focus rays of light on the retina at the back of the eye, and though it appears to be uniform and smooth, it can be misshapen and pockmarked with dents, dimples, and other imperfections that can affect a person’s sight. The relative positioning of Webb’s primary mirror segments after launch will be the equivalent of these corneal imperfections, and engineers on Earth will need to make corrections to the mirrors’ positions to bring them into alignment, ensuring they will produce sharp, focused images. These corrections are made through a process called wavefront sensing and control, which aligns the mirrors to within tens of nanometers. During this process, a wavefront sensor (NIRCam in this case) measures any imperfections in the alignment of the mirror segments that prevent them from acting like a single, 6.5-meter (21.3-foot) mirror. An eye surgeon performing wavefront-guided laser vision correction surgery (a process that was improved by technology developed to shape Webb’s mirrors) similarly measures and three-dimensionally maps any inconsistencies in the cornea. The system feeds this data to a laser, the surgeon customizes the procedure for the individual, and the laser then reshapes and resurfaces the cornea according to that procedure. Engineers on Earth will not use a laser to melt and reshape Webb’s mirrors (feel free to give a sigh of relief); instead, they will use NIRCam to take images to determine how much they need to adjust each of the telescope’s 18 primary mirror segments. They can adjust the mirror segments through extremely minute movements of each segment’s seven actuators (tiny mechanical motors) — in steps of about 1/10,000th the diameter of a human hair. The wavefront sensing and control process is broken into two parts — coarse phasing and fine phasing. During coarse phasing, engineers point the telescope toward a bright star and use NIRCam to find any large offsets between the mirror segments (though “large” is relative, and in this case it means mere millimeters). NIRCam has a special filter wheel that can select, or filter, specific optical elements that are used during the coarse phasing process. While Webb looks at the bright star, grisms in the filter wheel will spread the white light of the star out on a detector. Grisms, also called grating prisms, are used to separate light of different wavelengths. To an observer, these different wavelengths appear as parallel line segments on a detector. “The light from each segment will interfere with adjacent segments, and if the segments are not aligned to better than a wavelength of light, that interference shows up like barber pole patterns,” explained Lee Feinberg, optical telescope element manager for the Webb telescope at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The analysis of the barber pole patterns tell the engineers how to move the mirrors.” During fine phasing, engineers will again focus the telescope on a bright star. This time, they will use NIRCam to take 18 out-of-focus images of that star — one from each mirror segment. The engineers then use computer algorithms to determine the overall shape of the primary mirror from those individual images, and to determine how they must move the mirrors to align them. These algorithms were previously tested and verified on a 1/6th scale model of Webb’s optics, and the real telescope experienced this process inside the cryogenic, airless environment of Chamber A at NASA’s Johnson Space Center in Houston. Engineers will go through multiple fine-phasing sessions until those 18 separate, out-of-focus images become a single, clear image. After the engineers align the primary mirror segments, they must align the secondary mirror to the primary, then align both the primary and secondary mirrors to the tertiary mirror and the science instruments. Though the engineers complete the initial alignment with NIRCam, Feinberg explained they also test the alignment with Webb’s other instruments to ensure the telescope is aligned “over the full field.” The entire alignment process is expected to take several months, and once Webb begins making observations, its mirrors will need to be checked every few days to ensure they are still aligned — just as someone who underwent laser vision correction surgery will schedule regular eye doctor visits to make sure their vision is not degrading. The James Webb Space Telescope, the scientific complement to NASA's Hubble Space Telescope, will be the premier space observatory of the next decade. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).