《像钻石一样坚硬? 科学家预测了超硬碳的新形式》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2019-09-11
  • 超硬材料可以切割,钻孔和抛光其他物体。它们还具有创造防刮涂层的潜力,可以帮助保护昂贵的设备免受损坏。

    现在,科学正在为具有这些诱人品质的新材料的开发打开大门。

    研究人员已经使用计算技术来识别43种以前未知的碳被认为是稳定和超硬的 - 包括一些预测比钻石略硬或几乎硬的碳。每种新的碳种类由在晶格中以不同图案排列的碳原子组成。

    这项研究发表在9月3日的npj计算材料杂志上,它结合了晶体结构的计算预测和机器学习,以寻找新材料。这项工作是理论研究,这意味着科学家已经预测了新的碳结构,但还没有创造出它们。

    “钻石现在是市场上最硬的材料,但它们非常昂贵,”布法罗化学家Eva Zurek大学说。 “我有同事在实验室里进行高压实验,在钻石之间挤压材料,他们抱怨钻石破碎时有多贵。

    “我们希望找到比钻石更硬的东西。如果你能找到其他硬质材料,可能会让它们变得更便宜。它们也可能具有钻石所没有的有用特性。也许它们会以不同的方式与热量或例如,电力。“

    Uure艺术与科学学院化学教授Zurek博士构思了这项研究,并与杜克大学机械工程和材料科学教授Stefano Curtarolo博士共同领导了该项目。

    寻求硬质材料

    硬度与材料抵抗变形的能力有关。正如Zurek所解释的那样,它意味着“如果你试图用锋利的尖端压痕材料,就不会形成一个孔,或者孔会非常小。”

    科学家认为,如果通过一项名为维氏硬度试验的实验测得硬度值超过40千兆帕,则该物质是超硬的。

    预计所有研究的43种新碳结构都符合该阈值。估计三个钻石的维氏硬度超过钻石,但只有一点点。 Zurek还提醒说,计算中存在一些不确定性。

    科学家发现的最坚硬的结构倾向于在其晶格中包含钻石和lonsdaleite碎片 - 也称为六角形钻石。除了43种新型碳之外,该研究还新近预测,其他团队过去所描述的一些碳结构将是超硬的。

    加快发现超硬材料

    新论文中使用的技术可用于识别其他超硬材料,包括含有碳以外元素的材料。

    “很少有超硬材料是已知的,所以有兴趣找到新材料,”Zurek说。 “我们对超硬材料了解的一件事是它们需要具有强大的粘合力。碳 - 碳键很强,这就是我们研究碳的原因。其他通常在超硬材料中的元素来自周期的同一侧。表,如硼和氮。“

    为了进行这项研究,研究人员使用XulOpt,一种在Zurek实验室开发的用于晶体结构预测的开源进化算法,来生成碳的随机晶体结构。然后,该团队采用机器学习模型来预测这些碳物种的硬度。最有希望的坚硬和稳定的结构被XtalOpt用作“父母”来产生额外的新结构,等等。

    使用自动流动(AFLOW)数据库训练用于估计硬度的机器学习模型,该数据库是具有已经计算的性质的巨大材料库。 Curtarolo的实验室负责AFLOW,之前在北卡罗来纳大学教堂山分校的Olexandr Isayev小组开发了机器学习模型。

    “这是加速材料开发。它总是需要时间,但我们使用AFLOW和机器学习来大大加快这一过程,”Curtarolo说。 “算法学习,如果你已经很好地训练了模型,算法将以合理的精度预测材料的属性 - 在这种情况下,硬度。”

    研究报告的共同作者,杜克大学机械工程和材料科学助理研究教授Cormac Toher博士说:“你可以使用计算技术预测出最好的材料并进行实验。”

    新研究的第一和第二作者是UB博士研究生Patrick Avery和UB博士生Xiaoyu Wang,他们都在Zurek的实验室。 除了这些研究人员,Zurek,Curtarolo和Toher,该论文的共同作者还包括杜克大学的Corey Oses和Eric Gossett以及米兰大学的Davide Proserpio。

    该研究由美国海军研究办公室资助,得到了米兰大学的额外支持,以及UB计算研究中心的计算支持。

    npj计算材料 - 自然合作者期刊系列的一部分 - 是由Springer Nature与中国科学院上海硅酸盐研究所合作出版的自然研究期刊。

    ——文章发布于2019年9月9日

相关报告
  • 《科学家将核废料转化为可持续使用1000年的钻石电池》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-04-26
    • 核能被认为是一种清洁能源,因为它的二氧化碳排放量为零;然而,与此同时,随着世界各地越来越多的反应堆的建成,它产生了大量的危险的放射性废物。专家们为这个问题提出了不同的解决方案,以便更好地照顾环境和人们的健康。由于没有足够的安全储存空间来处理核废料,这些想法的焦点是材料的再利用。 放射性钻石电池在2016年首次被开发出来并立即受到好评,因为它们承诺提供一种新的、具有成本效益的核废料回收方式。在这种情况下,不可避免地要斟酌它们是否是这些有毒、致命残留物的最终解决方案。 什么是放射性钻石电池? 放射性钻石电池最初是由布里斯托尔大学卡博特环境研究所的一个物理学家和化学家团队开发的。这项发明是作为一种β辐射电转换设备提出的,这意味着它是由核废料的β衰变提供动力。 β衰变是一种放射性衰变,当一个原子的原子核有过量的粒子并释放一些粒子以获得更稳定的质子和中子的比例时就会发生。这就产生了一种被称为β辐射的电离辐射,其中涉及大量被称为β粒子的高速和高能电子或正电子。β粒子含有核能,可以通过半导体转化为电能。 β衰变是一种放射性衰变,当一个原子的原子核有过量的粒子并释放一些粒子以获得更稳定的质子和中子的比例时就会发生。 一个典型的betvoltaic电池由置于半导体之间的放射性材料薄层组成。当核材料衰变时,它发射出β粒子,将半导体中的电子击散,产生电流。然而,放射源离半导体越远,其功率密度就越低。除此之外,由于β粒子是随机向各个方向发射的,只有少数粒子会击中半导体,而其中只有少数粒子会被转化为电能。这意味着核电池的效率比其他类型的电池低得多。这就是聚晶金刚石(PCD)的作用。 放射性钻石电池是使用一种叫做化学气相沉积的工艺制造的,这种工艺被广泛用于人造钻石的制造。它使用氢气和甲烷的混合等离子体,在非常高的温度下生长金刚石薄膜。研究人员通过使用含有放射性同位素Carbon-14的放射性甲烷,对CVD工艺进行了修改以生长放射性钻石,这种放射性同位素在经过辐照的反应堆石墨块上发现。 钻石是人类所知的最硬的材料之一--它甚至比碳化硅更硬。而且它既可以作为一个放射源,也可以作为一个半导体。把它暴露在β射线下会得到一个不需要充电的长效电池。它内部的核废料一次又一次地为它提供燃料,使它能够长期自我充电。然而,布里斯托尔的科研团队警告说,他们的放射性钻石电池不适合用于笔记本电脑或智能手机,因为它们只含有1克碳-14,这意味着它们提供的功率非常低--只有几微瓦,低于典型的AA电池。因此,到目前为止,它们的应用仅限于那些必须长时间无人看管的小型设备,如传感器和心脏起搏器。 核电池的起源可以追溯到1913年,当时英国物理学家亨利-莫斯利发现,粒子辐射可以产生电流。在20世纪50年代和60年代,航空航天工业对莫斯利的发现非常感兴趣,因为它有可能为长期任务的航天器提供动力。RCA公司也研究了核电池在无线电接收机和助听器中的应用。 但为了发展和维持这项发明,还需要其他技术。在这方面,合成钻石的使用被认为是革命性的,因为它为放射性电池提供了安全性和导电性。随着纳米技术的加入,一家美国公司打造了一个高功率的纳米钻石电池。 NDB公司总部位于加利福尼亚州旧金山,成立于2012年,目标是创造一种更清洁、更环保的传统电池替代品。这家初创公司在2016年推出了其版本的基于钻石的电池,并宣布在2020年进行两项概念验证测试。它是试图将放射性钻石电池商业化的公司之一。NDB的纳米钻石电池被描述为Alpha、Beta和中子辐射电池,根据他们官网的介绍,有如下特点: 持久性。该公司计算出这些电池可以持续28000年,这意味着它们可以为长期任务中的空间飞行器、空间站和卫星提供可靠的动力。地球上的无人机、电动汽车和飞机将永远不需要停下来充电。 安全。钻石不仅是最坚硬的物质之一,也是世界上最有导热性的材料之一,这有助于保护电池中的放射性同位素所产生的热量,使其迅速变成电流。 市场友好性。其中的PCD薄膜层使电池可以允许不同的形状和形式。这就是为什么纳米钻石电池可以有多种用途,进入不同的市场,从上述的空间应用到消费电子。不过,消费版寿命不会超过十年。 纳米钻石电池计划在2023年进入市场。 Arkenlight是将布里斯托尔的放射性钻石电池商业化的英国公司,计划在2023年下半年向市场发布他们的第一个产品。 放射性钻石电池的未来 现代电子设备的便携性,电动汽车的日益普及,以及21世纪将人类带入火星的长期太空任务的竞赛,在过去几年中引发了人们对电池技术研究的日益关注。 一些类型的电池更适合于某些应用,而对另一些应用则不那么有用。但我们可以说,我们熟悉的传统锂离子电池不会很快被放射性钻石电池取代。 传统电池的持续时间较短,但它们的制造成本也更低。然而,与此同时,它们的寿命并不长(它们的寿命约为5年),这也是一个问题,因为它们也会产生大量的电子垃圾,不容易回收。 放射性钻石电池更方便,因为它们的寿命比传统电池长很多。如果它们能像NDB公司提出的那样被开发成通用电池,那么我们最终可能会得到比智能手机寿命长得多的电池。 然而,Arkenlight公司开发的钻石β辐射电转换技术不会走那么远。该公司正在研究将其大量的碳-14betab电池堆叠成电池的设计。为了提供高功率的放电,每个电池可以伴随着一个小型的超级电容器,这可以提供一个优秀的快速放电能力。 然而,这种放射性材料的寿命也超过了5000年。如果辐射以气态形式从设备中泄漏出来,可能会成为一个问题。这就是钻石出现的原因。在钻石的形成中,C-14是一种固体,所以它不能被生物提取和吸收。 英国原子能管理局(UKAEA)计算,100磅(约45公斤)的碳-14足以拿来制造数百万个基于钻石的长寿命电池。这些电池还可以降低核废料的储存成本。 布里斯托尔大学研究员汤姆-斯科特教授告诉Nuclear Energy Insider说:"通过直接从反应堆中去除辐照石墨中的碳-14,这将使剩余的废物产品的放射性降低,因此更容易管理和处置。处置石墨废物的成本估计为:中级废物[ILW]每立方米46,000磅(60,000美元),低级废物[LLW]每立方米3,000磅(4,000美元)。" 所有这些特点正是我们需要的可持续未来的最佳选择之一,我们可以拭目以待,看看制造商是否能找到处理生产成本和低能量输出的方法,并将他们的钻石基电池以成本效益和可获得的方式推向市场。
  • 《科学家克隆野生玉米变异基因》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-12-07
    •   11月17日,中国科学院分子植物科学卓越创新中心巫永睿研究团队与上海师范大学王文琴研究团队合作,在《自然》(Nature)上,发表了题为THP9 enhances seed protein content and nitrogen-use efficiency in maize的研究论文。科研人员经过坚持不懈的努力,在野生玉米中克隆了控制玉米高蛋白品质形成和氮素高效利用的关键变异基因Teosinte High Protein 9 (THP9)。   玉米的祖先起源于南美洲墨西哥南部的巴尔萨斯河流域,名为“大刍草”。它像杂草一样生长,种子外面包裹着坚硬的壳,无法直接食用。人类祖先早在9000年以前开始驯化玉米,逐步把杂草一样的野生玉米大刍草改造成了今天的玉米。如今,玉米已成为世界上最高产的农作物之一。玉米产量高,有效能量多,是最常用且用量最大的饲料之一,故有“饲料之王”的美称。随着人们生活质量提高,肉蛋奶需求增加,玉米的消费量日益增加,致使近年来玉米进口量不断提升。提高玉米蛋白含量是保障国家粮食安全的重大战略需求,也是保障我国畜禽养殖业和饲料加工业健康发展的重要途径之一。然而,野生玉米高蛋白形成的机理是长期以来悬而未决的难题,同时,控制玉米总蛋白含量和氮素高效利用的关键基因尚未找到。   科研团队于2012年进行玉米高蛋白供体材料的寻找、蛋白含量测定、遗传分析以及群体构建。实验发现,普通玉米自交系蛋白含量约为10%,而玉米祖先野生玉米在未施加氮肥条件下种子蛋白含量达30%,其含量是现代普通栽培玉米的3倍,表明野生玉米含有控制高蛋白含量的关键基因。这些基因是什么,它们在野生和现代玉米中到底发生了什么改变?它们能否被挖掘用于提高现代玉米的蛋白含量?不同玉米自交系遗传变异大于人类与黑猩猩之间的差异,而9000年前的野生玉米与现代玉米的差异就更大了。   为了充分利用野生玉米的基因资源,挖掘控制野生玉米高蛋白的优良变异基因,研究团队破解了高度复杂的野生玉米基因组。研究采用三代测序技术和三维基因组相结合的策略,摸索并拼装出既杂合又复杂的野生玉米单倍体基因组(Zea mays ssp. parviglumis, accession number Ames21814),用于野生玉米高蛋白基因的定位和克隆。科研人员经过艰苦攻关,连续创制了超过10代的遗传材料,构建出野生玉米和普通玉米自交系B73的高世代近等基因系群体。在这一过程中,研究提取了超过4万个样本的DNA进行基因型鉴定,测定了超过2万个样本的蛋白含量进行表型分析,并分别在回交群体的第4代BC4(n=500)、第6代BC6(n=1314)以及第8代BC8(n=1344)进行了3次大规模高蛋白遗传群体的测序以及精细的图位克隆,最终在野生玉米中克隆到首个控制玉米高蛋白含量的主效基因THP9。该基因编码天冬酰胺合成酶4 (ASN4),ASN是氮代谢的中心,负责合成天冬酰胺。天冬酰胺在氮循环中具有核心作用,并在氨基基团的分子间转移反应中充当氮供体。因此,植物中的天冬酰胺水平与种子蛋白质含量密切相关。研究发现,野生玉米优良基因Thp9-T显著高表达,而B73和一些玉米自交系中含有Thp9的突变形式Thp9-B,导致ASN4的表达量较低。野生玉米优良基因Thp9-T导入玉米自交系B73后,使种子蛋白质含量增加约35%,根中氮含量增加约54%,茎中氮含量增加约94%,叶片中氮含量增加约18%,且生物量即植株整体重量增加。   此外,研究团队在三亚南繁基地开展了大规模田间试验,将野生玉米高蛋白基因Thp9-T杂交导入我国推广面积最大的玉米生产栽培品种郑单958中,可显著提高杂交种籽粒蛋白含量,表明该基因在培育高蛋白玉米中具有重要的应用潜能;同时,在减少氮肥施用条件下,可有效保持玉米的生物量以及植株和籽粒中氮含量水平,这对于在低氮条件下促进玉米高产、稳产具有重要意义。   本研究在野生玉米中发现一个控制高蛋白玉米形成的关键优异变异基因Thp9-T,其可以提高玉米中氮的同化效率从而有利于产生更多的蛋白质。研究表明,将Thp9-T导入现代玉米品种,提高了氨基酸水平,尤其是天冬酰胺,且在不影响粒重的情况下增加了种子蛋白质含量。同时,在大田试验中,本研究也验证了Thp9-T在高蛋白育种改良过程中具有重要作用,显著提高玉米栽培品种郑单958的籽粒蛋白含量,并在低氮条件下能有效保持玉米的生物量以及植株和籽粒氮含量水平,这为今后该基因的进一步推广应用奠定了坚实基础。   由于化肥的过度使用,野生玉米优良基因Thp9-T在长期的育种过程中未受到选择压力。本研究不仅克隆了野生玉米变异基因Thp9-T,利于现代栽培玉米提高籽粒蛋白含量的遗传改良,而且对未来减少化肥施用和保护生态环境具有重要指导意义。   研究工作得到中国科学院战略性先导科技专项(B类)、国家自然科学基金、中国博士后科学基金、上海“超级博士后”激励计划的支持。齐鲁师范学院、山东农业大学、深圳农业基因组研究所、美国亚利桑那大学科研人员参与研究。