《【文献】High Power Laser Science and Engineering|The design and optimization methods towards 10 kW high beam quality fiber laser based on counter tandem pumping scheme》

  • 来源专题:光电信息技术
  • 编译者: 王靖娴
  • 发布时间:2024-07-17
  • 【文献背景】近期,在国家重点研发计划项目(2022YFB3606000)支持下,国防科技大学研究团队突破高模式不稳定阈值大模场双包层YDF制备技术,综合采用后向泵浦、种子激光拉曼滤波、增益光纤弯曲直径优化、输出传能光纤长度优化等方式,有效提升了级联泵浦光纤激光器的模式不稳定效应阈值和非线性效应阈值,实现了输出功率10 kW,光束质量因子M2=1.92光纤激光输出。

    【内容概述】文献详细介绍了一种10千瓦高光束质量光纤激光器的设计和优化方法,该激光器基于对向串联泵浦方案。研究团队通过理论分析和实验验证,发现在对向泵浦配置中,受激拉曼散射(SRS)阈值主要受输出传输光纤长度的影响,并提出了通过优化光纤参数来提高SRS阈值的有效途径。最终,研究实现了具有M2=1.92的光束质量、超过10千瓦输出功率的光纤激光器,且未观察到模式不稳定性或严重的SRS限制,为高功率光纤激光器的设计和应用提供了重要的理论和实践指导。

    激光器系统结构示意图如下图所示。

  • 原文来源:http://mp.weixin.qq.com/s?__biz=MzUzNTA0NDI1Ng==&mid=2247500701&idx=2&sn=c44f439c351376ebfc55c90f960ccc39&scene=0
相关报告
  • 《【文献】Laser & Photonics Reviews | Ultrabroadband Light Coupling for Integrated Photonics via Nonadiabatic Pumping》

    • 来源专题:光电信息技术
    • 编译者:王靖娴
    • 发布时间:2024-12-11
    • 【内容概述】2024年12月5日,《Laser & Photonics Reviews》在线发表了陆培祥教授带领的“强场超快光学”创新研究群体在片上集成超宽带定向耦合器方面取得的最新研究成果 Ultrabroadband Light Coupling for Integrated Photonics via Nonadiabatic Pumping。 该研究介绍了一种基于非绝热泵浦的超宽带光耦合策略,用于集成光子学中的光耦合。研究团队在薄膜锂铌酸盐绝缘体(LNOI)平台上实验验证了这种设计,发现非绝热转换能够减少波导中与本征态相关的相位色散,从而实现高效率、无色散的方向性传输。实验中,这种耦合策略覆盖了约320纳米的1dB带宽(模拟中超过400纳米),且所需的耦合长度仅为传统绝热传输方法的1/10。此外,该耦合策略还展现出低插入损耗(小于1dB)、低串扰(小于-10dB)以及对结构偏差的强大鲁棒性(约100纳米)。研究还构建了包括分束器和多级级联网络在内的复杂功能器件,用于宽带光路由和分割。这项工作在扩展操作带宽至所有光通信波段和最小化占用空间方面具有显著优势,显示出在大规模光子集成和芯片上高速信息处理方面的巨大潜力。
  • 《Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy》

    • 来源专题:现代化工
    • 编译者:武春亮
    • 发布时间:2024-07-25
    • Registration Log In For Libraries For Publication Downloads News About Us Contact Us For Libraries For Publication Downloads News About Us Contact Us Search Paper Titles Construction of Ternary Heterostructured NaNbO3/Bi2S3/ Ag Nanorods with Synergistic Pyroelectric and Photocatalytic Effects for Enhanced Catalytic Performance p.1 Magnetic Nitrogen-Doped Fe3C@ c Catalysts for Efficient Activation of Peroxymonosulfate for Degradation of Organic Pollutants p.17 Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study p.33 Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures p.49 Correlation between Crystallite Characteristics and the Properties of Copper Thin Film Deposited by Magnetron Sputtering: Bias Voltage Effect p.65 Development of Hydrophilic Self-Cleaning and Ultraviolet-Shielding Coatings Incorporating Micro-Titanium Dioxide/Nano-Calcium Carbonate (μ-TiO2)/(Nano-CaCO3) p.79 Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy p.91 HomeJournal of Nano ResearchJournal of Nano Research Vol. 83Production of Cu/Zn Nanoparticles by Pulsed Laser... Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy Article Preview Abstract: As a preliminary step to establish technology for fabricating High-Entropy Alloys (HEAs) that can make a large-scale HEA using a pulse laser with high peak intensity and high-repetition in the future, we fabricated alloys in which two types of metal atom are mixed close together in the order of nanometers. For the method to produce the alloy, metal alloy nanoparticles were prepared by irradiating the material in liquid with focused high-repetition Q-switched laser pulses using an in-liquid laser ablation method. When brass powder was used as an original material, analysis results by TEM showed that numerous nanoparticles mixed with copper and zinc atoms could be produced. Furthermore, it was clarified by SEM EDS that copper and zinc atoms in the nanoalloy were maintained at a ratio of 3:1 in sintered alloy, and that the atoms were spatially uniformly distributed over a wide range in sintered metal. Access through your institution Add to Cart You might also be interested in these eBooks View Preview Info: Periodical: Journal of Nano Research (Volume 83) Pages: 91-108 DOI: https://doi.org/10.4028/p-Bo8Als Citation: Cite this paper Online since: July 2024 Authors: Taku Saiki, Mitsuru Inada Keywords: Brass Powder, Cu/Zn Alloy, High-Entropy Alloys (HEA), Laser Ablation in Liquids, Metal nanoparticles Export: RIS, BibTeX Price: Permissions: Request Permissions Share: - Corresponding Author References [1] Haruyuki Inui, High-Entropy Alloy, Uchidaroukakuho, Tokyo, 2020. Google Scholar [2] S.-H. Joo, J. W. Bae, W.-Y. Park, Y. Shimada, T. Wada, H. S. Kim, A. Takeuchi, T. J. Konno, H. Kato, I. V. Okulov, Beating Thermal Coarsening in Nanoporous Materials via High-Entropy Design, Adv. Mater. 32 (2020) 1906160. DOI: 10.1002/adma.202070044 Google Scholar [3] C. Haase, F. Tang, M. B. Wilms, A. Weisheit, B. Hallstedt, Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design, Materials Science and Eng. A 688 (2017)180-189. DOI: 10.1016/j.msea.2017.01.099 Google Scholar [4] B.S. Murty, J.W. Yeh, S. Ranganathan, High Entropy Alloys, Butterworth-Heinemann, Boston, 2014, p.1 Chap. 1. Google Scholar [5] X. Lim, Mixed-up metals make for stronger, tougher, stretchier alloys, Nature 533 (2016) 306-307. DOI: 10.1038/533306a Google Scholar [6] J. W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, S.Yi. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35 (2004) 2533-2536. DOI: 10.1007/s11661-006-0234-4 Google Scholar [7] B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375-377 (2004) 213-218. DOI: 10.1016/j.msea.2003.10.257 Google Scholar [8] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H.Chang, E. P. George, R. O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(2014) 1153-1158. DOI: 10.1126/science.1254581 Google Scholar [9] O.N. Senkov, G. B. Wilks, J. M. Scott, D. B. Miracke, Mechanical properties of Nb25Mo25Ta25W25 andV20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19 (2011) 698-706. DOI: 10.1016/j.intermet.2011.01.004 Google Scholar [10] Y. Kang, O. Cretu, J. Kikkawa, K. Kimoto, H Nara, A. S. Nugraha, H. Kawamoto, M. Eguchi, T. Liao, Z. Sun, T. Asahi, Y. Yamauchi , Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites, Nature Commun. 14 (2023) Article number: 4182. DOI: 10.1038/s41467-023-39157-2 Google Scholar [11] Y. Chida, T. Tomimori, T. Ebata, N. Taguchi, T. Ioroi, K. Hayashi, N. Todoroki, T. Wadayama, Experimental study platform for electrocatalysis of atomic-level controlled high-entropy alloy surfaces, Nature Commun. 14 (2023) Article number: 4492. DOI: 10.1038/s41467-023-40246-5 Google Scholar [12] K. Mori, N. Hashimoto, N. Kamiuchi, H. Yoshida, H. Kobayashi, H. Yamashita, Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation, Nature Commun. 12 (2021) Article number: 3884. DOI: 10.1038/s41467-021-24228-z Google Scholar [13] K. B. Zhang, Z. Y. Fu, J. Y. Zhang, W. M. Wang, S. W. Lee, K. Niihara, Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying, J. Alloys Compd. 495 (2010) 33-38. DOI: 10.1016/j.jallcom.2009.12.010 Google Scholar [14] S. Praveen, B. S. Murty, R. S. Kottada, Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys, Mater. Sci. Eng. A 534 (2012) 83-89. DOI: 10.1016/j.msea.2011.11.044 Google Scholar [15] W. Chen, Z. Fu, S. Fang, H. Xiao, D. Zhu, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy, Mater. Des., 51 (2013) 854-860. DOI: 10.1016/j.matdes.2013.04.061 Google Scholar [16] Z. Fu, W. Chen, H. Xiao, L. Zhou, D. Zhu, S. Yang, Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA–SPS technique, Mater. Des. 44 (2013) 535-539. DOI: 10.1016/j.matdes.2012.08.048 Google Scholar [17] W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Z. Fu, Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering, Intermetallics 56 (2015) 24-27. DOI: 10.1016/j.intermet.2014.08.008 Google Scholar [18] Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang, Y. Wu, Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating, Applied Surface Science 396 (2017) 1420-1426. DOI: 10.1016/j.apsusc.2016.11.176 Google Scholar [19] S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing, Scripta Mater. 134 (2017) 33-36. DOI: 10.1016/j.scriptamat.2017.02.042 Google Scholar [20] R. Saha, R. Ueji, N. Tsuji, Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel, Scripta Mater. 68 (2013) 813- 816. DOI: 10.1016/j.scriptamat.2013.01.038 Google Scholar [21] Y. Z. Tian, L. J. Zhao, S. Chen, D. Terada, A. Shibata, N. Tsuji, Optimizing strength and ductility in Cu-Al alloy with recrystallized nanostructures formed by simple cold rolling and annealing, J. Mater. Sci. 49 (2014) 6629-6639. DOI: 10.1007/s10853-014-8299-8 Google Scholar [22] Y. Z. Tian, Y. Bai, M. Chen, A. Shibata, D. Terada, N. Tsuji, Enhanced Strength and Ductility in an Ultrafine-Grained Fe-22Mn-0.6C Austenitic Steel Having Fully Recrystallized Structure, Metall. Mater. Trans. A 45 (2014) 5300-5304. DOI: 10.1007/s11661-014-2552-2 Google Scholar [23] Y. Z. Tian, L. J. Zhao, S. Chen, A. Shibata, Z. F. Zhang, N. Tsuji, Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes, Sci. Rep. 5 (2015), Article number: 16707. DOI: 10.1038/srep16707 Google Scholar [24] R. Zheng, T. Bhattacharjee, A. Shibata, T. Sasaki, K. Hono, M. Joshi, N. Tsuji, Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained structures, Scripta Mater. 131 (2017) 1-5. DOI: 10.1016/j.scriptamat.2016.12.024 Google Scholar [25] C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, P. D. Lee, In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing, Nature Commun. 9 (2018) Article number: 1355. DOI: 10.1038/s41467-018-03734-7 Google Scholar [26] H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koidzumi, K. Kuwabara, T. Kato, A. Chiba, Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting, Mater. Sci. Eng. A 656 (2016) 39-46. DOI: 10.1016/j.msea.2016.01.019 Google Scholar [27] T. Fujieda, H. Shiratori, K. Kuwabara, M. Hirota, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, S. Watanabe, CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment, Mater. Lett. 189 (2017) 148-151. DOI: 10.1016/j.matlet.2016.11.026 Google Scholar [28] T. Fujieda, H. Shiratori, K. Kuwabara, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials, Materials Letters 159 (2015) 12-15. DOI: 10.1016/j.matlet.2015.06.046 Google Scholar [29] Y. L. Chou, J. W. Yeh, H. C. Shih, Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions, Corr. Sci. 52 (2010) 2571-2581. DOI: 10.1016/j.corsci.2010.06.025 Google Scholar [30] Y. L. Chou, J. W. Yeh, H. C. Shih, Effect of Molybdenum on the Pitting Resistance of Co1.5CrFeNi1.5Ti0.5Mox Alloys in Chloride Solutions, Corrosion 67 (2011) 085002. DOI: 10.5006/1.3613646 Google Scholar [31] Y. Feng, Z. Li, H. Liu, C. Dong, J. Wang, S. A. Kulinich, X. Du, Laser-Prepared CuZn Alloy Catalyst for Selective Electrochemical Reduction of CO2 to Ethylene, Langmuir 34 (2018) 13544-13549. DOI: 10.1021/acs.langmuir.8b02837 Google Scholar [32] Y. Kudo, M. Suzuki, Al slid-stage Air Cells, JP Patent 147442. (2006). Google Scholar [33] P. Charvin, S. Abanades, F. Lemort, G. Flamant, Hydrogen Production by Three-Step Solar Thermochemical Cycles Using Hydroxides and Metal Oxide Systems, Energy & Fuels 21 (2007) 2919-2928. DOI: 10.1021/ef0701485 Google Scholar [34] D. G. Rowe, Solar-powered lasers, Nature Photonics 4 (2010) 64-65. Google Scholar [35] T. Yabe, T. Okubo, S. Uchida, K. Yoshida, M. Nakatuska, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium, Appl. Phys. Lett. 90 (2007) 261120-261122. DOI: 10.1063/1.2753119 Google Scholar [36] M. S. Mohamed, T. Yabe, C. Baasandash, Y. Sato, Y. Mori, L. Shi-Hua, H. Sato, S. Uchida, Laser- induced magnesium production from magnesium oxide using reducing agents, J. Appl. Phys. 104 (2008) 113110-113116. DOI: 10.1063/1.2975969 Google Scholar [37] T. Saiki, T. Okada, K. Nakamura, T. Karita, Y. Nishikawa, Y. Iida, Air Cells Using Negative Metal Electrodes Fabricated by Sintering Pastes with Base Metal Nanoparticles, Int. J. of Energy Science 2 (2012) 228-234. Google Scholar [38] T. Saiki, S. Uchida, T. Karita, K. Nakamura, Y. Nishikawa, S. Taniguchi, Y. Iida, Recyclable metal air fuel cells using sintered magnesium pastes with reduced Mg nanoparticles by high-repetitive ns pulse laser ablation in liquid, Int. J. of Sustainable and Green Energy 3 (2014) 143-149. DOI: 10.1364/cleo_at.2017.jth2a.11 Google Scholar [39] T. Okada, T. Saiki, S. Taniguchi, T. Ueda, K. Nakamura, Y. Nishikawa, Y. Iida, Hydrogen Production using Reduced-iron Nanoparticles by Laser Ablation in Liquids, ISRN Renewable Energy 2013 (2013) ID 827681. DOI: 10.1155/2013/827681 Google Scholar [40] T. Saiki, S. Taniguchi, K. Nakamura, Y. Iida, Development of Solar-Pumped Lasers and Its Application, Electrical Engineering in Japan 199 (2017) 3-9. DOI: 10.1002/eej.22961 Google Scholar [41] T. Saiki, Y. Iida, M. Inada, Appearance of ferro-magnetic property for Si nano-polycrystalline body and vanishing of electrical resistances at local high frequencies, J. of Nanomaterials 2018 (2018) ID 9260280. DOI: 10.1155/2018/9260280 Google Scholar [42] G. Cohn, D. Starosvetsky, R. Hagiwara, D. D. Macdonald, Y. Ein-Eli, Silicon-air batteries, Electrochemistry Commun. 11 (2009) 1916-1918. DOI: 10.1016/j.elecom.2009.08.015 Google Scholar [43] A. Henglein, Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition, J. Phys. Chem. 97 (1993) 5457-5471. DOI: 10.1021/j100123a004 Google Scholar [44] M. S. Sibbald, G. humanov, and T. M. Cotton, Reduction of cytochrome c by halide-modified, laser- ablated silver colloids, J. Phys. Chem. 100 (1996) 4672-4678. DOI: 10.1021/jp953248x Google Scholar [45] M. Kawasaki and N. Nishimura, Laser-induced fragmentative decomposition of ketone-suspended Ag2O micropowders to novel self-stabilized Ag nanoparticles, J. Phys. Chem. C 112 (2008) 15647- 15655. DOI: 10.1021/jp8056916 Google Scholar [46] H. Q. Wang, A. Pyatenko, K. Kawaguchi, X. Y. Li, Z. Swiatkowska-Wackocka, N. Koshizaki, Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres, Angew. Chem. Int. Ed. 49 (2010) 6361-6364. DOI: 10.1002/anie.201002963 Google Scholar [47] M. Shoji, K. Miyajima, F. Mafune, Ionization of gold nanoparticles in solution by pulse laser excitation as studied by mass spectrometric detection of gold cluster ions, J. Phys. Chem. C 112 (2008) 1929-1932. DOI: 10.1021/jp077503c Google Scholar [48] H. Zeng, W. Cai, Y. Li, J. Hu, P. Liu, Composition/Structural Evolution and Optical Properties of ZnO/Zn Nanoparticles by Laser Ablation in Liquid Media, J. Phys. Chem. B 109 (2005) 18260-18266. DOI: 10.1021/jp052258n Google Scholar [49] T. Nishi, N. Suzuki, H. Sugiyama, K. Yano, H. Azuma, High concentration silver nanoparticles stably dispersed in water without chemical reagent, J. Photochem. Photobiol. A 226 (2011) 64-67. DOI: 10.1016/j.jphotochem.2011.10.016 Google Scholar [50] R. Al-Obaidy, A. J. Hadier, S. Al-Musawi, N. Arsad, Study of the Effects of Solution Types on Concentration of Iron Oxide by Pulsed Laser Ablation in Liquid, J. of Applied Science and Nanotechnology 3 (2023) 137-150. DOI: 10.53293/jasn.2022.5025.1172 Google Scholar [51] M. M. Abud, M. M. Azzawi, H. F. Alnaqeeb, A New Technique for Measuring Laser Pulse Energy Using PZT/SiO2, J. of Applied Science and Nanotechnology 3 (2023) 87-96. DOI: 10.53293/jasn.2023.6122.1197 Google Scholar Cited by Related Articles Citation Added To Cart This paper has been added to your cart To Shop To Cart For Libraries For Publication Insights Downloads About Us Policy & Ethics Contact Us Imprint Privacy Policy Sitemap All Conferences All Special Issues All News Read & Publish Agreements Scientific.Net is a registered brand of Trans Tech Publications Ltd © 2024 by Trans Tech Publications Ltd. All Rights Reserved