《分子植物卓越中心等揭示细菌Class III转录激活机制》

  • 来源专题:转基因生物新品种培育
  • 编译者: zhangyi8606
  • 发布时间:2020-11-12
  • 9月28日,中国科学院分子植物科学卓越创新中心合成生物学重点实验室研究员张余课题组在Nature Chemical Biology上,在线发表题为CueR activates transcription through a DNA distortion mechanism的研究论文,主要研究细菌Class III转录因子CueR转录激活的分子机制。

    大约50年前,法国科学家Jacob和Monod发现乳糖操纵子,首次提出基因表达受到蛋白调控。阻遏蛋白Lac I和代谢物激活蛋白CRP(cAMP receptor protein;也称catabolite activator protein,CAP)被证明能够直接结合乳糖操纵子,分别发挥转录抑制和转录激活的功能。因此,学界对转录因子如何抑制及激活转录产生研究兴趣。大约30年前,Thomas A. Steitz研究组解析出CAP/CRP与DNA的复合物晶体结构,该结构首次展示转录因子识别DNA的方式。在随后的几十年中,科学家们利用化学交联、DNA足迹、遗传突变等方法尝试了解转录因子调控基因转录的具体机制,发现转录因子在启动子DNA的结合位置直接决定其对下游基因的影响,一般来说,转录因子结合在核心启动子区域(-35区和-10区)上游发挥转录激活功能,在核心启动子区域或基因内部则抑制转录。其中,转录激活按照转录因子结合位点距离核心启动子区域远近分为两类,结合位点位于启动子核心区域上游称为第一类转录激活(Class I),结合位点与启动子核心区域稍有重叠称为第二类转录激活(Class II)。2016年、2017年,Richard H. Ebright和Thomas A. Steitz研究组以CAP为模型,在Science上报道细菌Class I与II转录激活因子与RNA聚合酶及启动子DNA的复合物结构,揭示出经典的转录激活分子机制。总体来说,它们通过DNA结合结构域与启动子DNA相互作用,通过其转录激活结构域与RNA聚合酶相互作用,将RNAP聚合酶富集到其调控的启动子DNA区域激活转录。

    在探索CAP转录激活机制的同时,David C. Fritzinger发现一种机制特异的转录因子MerR,其能够结合在耐汞基因簇启动子核心区域,与RNAP的结合位置完全重叠,在一般情况下,抑制下游基因表达;胞内汞离子浓度高时,则激活下游基因表达。该现象与上述Class I和Class II的转录激活调控方式完全相悖,因为MerR的结合位置与RNAP结合位置完全重叠,按照此前的规律其应该只发挥转录抑制功能,且MerR调控的基因启动子DNA的-35区和-10区间隔为19bp,而细菌RNA聚合酶只能识别-35区和-10区间隔为17±1的启动子。科研人员在多种细菌中发现该类转录因子的存在,因此该类蛋白被命名为MerR家族转录因子,能够感受胞内的金属离子、氧化状态及抗生素胁迫。自20世纪90年代,科研人员利用DNA足迹手段,发现MerR处于抑制态和激活态时,其结合的启动子DNA构象可能有较大的构象变化。Thomas V. O’Halloran研究组针对MerR家族蛋白进行晶体结构研究,从2003年到2015年,科研人员分别解析CueR apo protein,CueR-DNA二元复合物及CueR-Ag+-DNA三元复合物的晶体结构,阐明该家族成员在不结合配体时,结合标准的B型双链DNA;结合配体后,能够使B型双链DNA发生约90度的弯折,使其局部区域呈现出A型双链DNA的构象,这为该类转录因子的激活机制增加了神秘面纱。鉴于其转录调控方式的特殊性,科研人员将MerR家族转录激活方式命名为非典型的转录激活或Class III转录激活。

    为揭示MerR家族转录因子的转录激活机制,张余课题组以大肠杆菌中感应银离子和亚铜离子的CueR蛋白为研究对象,解析CueR、Ag+、启动子DNA及RNA聚合酶的转录激活复合物电镜结构。结果显示,CueR结合在启动子DNA的两个关键区域-35区和-10区之间,使双链DNA在四个位置发生较大程度弯折,特别是位于CueR二聚体中心的位置,DNA发生约90度的弯曲。这种由CueR结合导致的启动子DNA弯曲,使19bp的-35/-10间隔区域重新压缩到17bp的物理距离,从而使RNA聚合酶能够启动下游基因转录。此外,该复合物结构显示,虽然CueR在启动子DNA上的结合位点与RNAP聚合酶的结合位点完全重叠,但是CueR结合在启动子DNA的一侧,而RNAP结合在启动子的另一侧,CueR与RNA聚合酶没有相互作用,二者互不干扰,这一点与Class I及Class II的转录激活机制完全不同。该研究解析以CueR为代表的细菌Class III转录激活复合物结构,揭示该类转录激活蛋白不依赖与RNA聚合酶的相互作用,仅通过改变DNA构象激活转录的分子机制。

    张余课题组博士生方城力和美国西北大学博士Steven J. Philips为论文的第一作者。浙江大学医学院研究员冯钰、西北大学教授Thomas V. O’Halloran、张余为论文的通讯作者。研究工作得到浙江大学电镜中心以及国家蛋白质中心(上海)的支持,受到国家自然科学基金、中国科学院战略性先导科技专项计划(B类)和上海市科技创新行动计划的资助。

相关报告
  • 《分子植物卓越中心等揭示种子植物崛起的秘密》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2023-11-10
    •     11月6日,中国科学院分子植物科学卓越创新中心晁代印研究组联合湖北大学生命科学学院吕世友研究组,在《自然-植物》(Nature Plants)上,在线发表了题为The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants的研究论文。该研究首次从特化细胞壁进化的角度揭示了种子植物崛起的奥秘。     种子植物是植物界最高等的类群,也是当前地球生物圈最主要的生命群体,占据所有植物物种的2/3,塑造了我们当今世界的主貌。最早的种子植物出现在3.6亿年前的泥盆纪,而直到数千万年之后的石炭纪末期,种子植物才开始崛起,并逐渐在二叠纪末期取代蕨类植物成为地球的霸主。地球因此进入中生代,也就是传说中的“恐龙时代”。然而,种子植物为什么在古生代晚期开始崛起是未解之谜。     根系是植物吸收和运输水分与矿质营养的关键器官,而内皮层则是根部控制水分和矿物质运输的核心。内皮层细胞壁具有疏水木质素组成的环状凯氏带,与内皮层细胞质膜紧密连接,形成防止物质自由扩散的屏障。内皮层细胞壁还存在另一种包裹整个内皮层细胞表面的特化细胞壁结构即木栓质片层。研究表明,凯氏带和木栓质片层在植物营养平衡和水分运输方面均扮演着重要角色,但分工却明显不同。近两月以来,晁代印研究组在凯氏带的形成和锚定方面取得了突破性进展。相关成果分别发表在《科学》(Science)和《自然-植物》上。然而,关于木栓层片层的进化机制及其在植物进化中的作用仍然未知。     该工作通过对18个不同进化节点中的代表性植物物种的研究发现,凯氏带存在于包括石松类、蕨类、裸子植物以及被子植物在内的所有维管植物,而木栓质片层则仅存在于裸子植物和被子植物(两者统称为种子植物)。这表明凯氏带和木栓质片层并非同时起源——前者起源于所有维管植物的共同祖先,后者则起源于种子植物的共同祖先。这刷新了植物学界对木栓质片层长期以来的认识,并为研究木栓质片层的进化提供了新视界。该团队对参与木栓层形成的相关基因进行分子进化分析,发现它们中的大部分均在种子植物的共同祖先中出现大规模扩张,暗示基因扩张导致的基因功能创新促使木栓质合成系统的出现。进一步,该团队探讨了不同植物中木栓质形成核心转录因子MYB类蛋白的功能,证实了MYB转录因子启动木栓质合成的功能确实是在种子植物基因扩张的基础上获得的。     在蕨类植物开始衰落、种子植物开始崛起的石炭纪末期,地球气候物突然变得干旱,而木栓质具有防水功能。研究猜测,木栓层的产生可能有助于种子植物的干旱适应性,促进种子植物在石炭纪之后兴起。研究利用两种木栓质缺失的拟南芥遗传材料证实了这一猜想,发现缺失木栓质的拟南芥对于干旱更为敏感。进而,研究利用拉曼光谱和核磁共振,揭示了木栓质片层对于植物维管水分的运输效率具有重要意义。结果表明,由于水分子较小,具有一定的跨膜自由扩散,没有木栓质片层的植物如石松和蕨类植物,遭受渗透胁迫时,根尖吸收的水分在运输的过程中会从上部内皮层细胞质膜中通过自由扩散泄露出去,导致运输效率很低。而具有木栓质片层的种子植物,由于木栓质片层完全包裹着整个内皮层细胞,使得水分自由扩散的途径几乎被完全阻断,因此它们在遭受渗透胁迫时水分泄漏比率只有蕨类植物和石松植物的1%-2%。这种防水效果提高了干旱情况下种子植物维管组织的水分运输效率,增强了耐旱能力。该研究提出了种子植物崛起的模型:石炭纪湿润的气候下没有木栓质片层的蕨类植物水分和营养吸收效率更高,更能适应当时的环境,因而更为繁荣;而在石炭纪晚期开始的干旱气候下,进化出木栓质片层的种子植物具备更高效的水分运输效率,具有更强的干旱适应能力,从而能够逐渐取代蕨类植物,成为地球表面的霸主。     该研究不仅揭示了凯氏带和木栓层的起源之谜,而且从崭新的角度首次证实了木栓层的出现成为促进种子植物的崛起驱动力。该研究发现木栓质片层在植物应对干旱等逆境胁迫中的重要作用。上述成果对提高植物的抗旱性、解析植物耐盐耐旱机制以及研发抗旱新品种等方面具有重要意义。
  • 《植物所揭示植物愈伤组织全能性建立的转录调控机制》

    • 来源专题:生物育种
    • 编译者:季雪婧
    •     植物细胞具有很高的全能性,赋予了植物器官在活体或培养条件从头再生新的器官和完整植株的能力。基于细胞全能性发展起来的植物离体再生体系,被广泛应用于遗传转化和基因编辑等植物生物技术中。在经典的植物离体再生体系中,生长素诱导的多能性愈伤组织形成是离体再生的第一步,被认为是植物细胞获得全能性的关键过程,对于不定芽或根的从头再生是必需的。研究表明,植物根干细胞因子在生长素诱导愈伤组织形成过程中的异位激活代表了愈伤组织全能性的建立,而一些参与根发育的生长素信号因子,如ARF及其下游的LBD转录因子被证明是控制愈伤组织形成的关键因子。然而,在愈伤组织诱导过程中,哪些因子负责根干细胞因子的激活并建立愈伤组织的全能性,尚不清楚。     中国科学院植物研究所胡玉欣研究组发现,拟南芥转录因子WRKY23和bHLH041分别作为根干细胞因子的转录激活子和抑制子协同激活了愈伤组织中的根干细胞因子。研究显示,WRKY23位于生长素响应因子ARF7/19下游通过直接激活根干细胞基因PLT3和PLT7,进而间接激活其下游的根干细胞基因PLT1、PLT2和WOX5的表达;而生长素诱导的LBD积累引起了bHLH041降解,进而释放了bHLH041对PLT1、PLT2和WOX5的转录抑制。进一步的研究表明,WRKY23介导的转录激活和bHLH041介导的转录解抑制协同建立了愈伤组织的全能性和芽再生能力。该研究揭示了植物离体再生体系中愈伤组织全能性获得的转录调控机制,建立了生长素信号和细胞全能性的分子联系,结合研究组的前期工作,构建了植物离体再生过程中愈伤组织形成和全能性获得的分子框架。这一成果有助于促进基于植物离体再生的转基因和基因编辑技术的开发和应用。?10月6日,相关研究成果在线发表在《植物细胞》(The Plant Cell)上。研究工作得到国家自然科学基金和中国科学院战略性先导科技专项的支持。