《Middle-ear function in the chinchilla: Circuit models and comparison with other mammalian species》

  • 来源专题:水声领域信息监测
  • 发布时间:2016-11-14
  • The middle ear efficiently transmits sound from the ear canal into the inner ear through a broad range of frequencies. Thus, understanding middle-ear transmission characteristics is essential in the study of hearing mechanics. Two models of the chinchilla middle ear are presented. In the first model, the middle ear is modeled as a lumped parameter system with elements that represent the ossicular chain and the middle-ear cavity. Parameters of this model are fit using available experimental data of two-port transmission matrix parameters. In an effort to improve agreement between model simulations and the phase of published experimental measurements for the forward pressure transfer function at high frequencies, a second model in which a lossless transmission line model of the tympanic membrane is appended to the original model is proposed. Two-port transmission matrix parameter results from this second model were compared with results from previously developed models of the guinea pig, cat, and human middle ears. Model results and published experimental data for the two-port transmission matrix parameters are found to be qualitatively similar between species. Quantitative differences in the two-port transmission matrix parameters suggest that the ossicular chains of chinchillas, cats, and guinea pigs are less flexible than in humans.

相关报告
  • 《Nature,1月18日,Predicting mammalian species at risk of being infected by SARS-CoV-2 from an ACE2 perspective》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2021-02-08
    • Predicting mammalian species at risk of being infected by SARS-CoV-2 from an ACE2 perspective Yulong Wei, Parisa Aris, Heba Farookhi & Xuhua Xia Scientific Reports volume 11, Article number: 1702 (2021) Abstract SARS-CoV-2 can transmit efficiently in humans, but it is less clear which other mammals are at risk of being infected. SARS-CoV-2 encodes a Spike (S) protein that binds to human ACE2 receptor to mediate cell entry. A species with a human-like ACE2 receptor could therefore be at risk of being infected by SARS-CoV-2. We compared between 132 mammalian ACE2 genes and between 17 coronavirus S proteins. We showed that while global similarities reflected by whole ACE2 gene alignments are poor predictors of high-risk mammals, local similarities at key S protein-binding sites highlight several high-risk mammals that share good ACE2 homology with human. Bats are likely reservoirs of SARS-CoV-2, but there are other high-risk mammals that share better ACE2 homologies with human. Both SARS-CoV-2 and SARS-CoV are closely related to bat coronavirus. Yet, among host-specific coronaviruses infecting high-risk mammals, key ACE2-binding sites on S proteins share highest similarities between SARS-CoV-2 and Pangolin-CoV and between SARS-CoV and Civet-CoV. These results suggest that direct coronavirus transmission from bat to human is unlikely, and that rapid adaptation of a bat SARS-like coronavirus in different high-risk intermediate hosts could have allowed it to acquire distinct high binding potential between S protein and human-like ACE2 receptors.
  • 《In situ measurements of sediment acoustic properties in Currituck Sound and comparison to models》

    • 来源专题:水声领域信息监测
    • 发布时间:2016-11-21
    • In situmeasurements of compressional and shear wave speed and attenuation were collected 30 cm below the water-sediment interface in Currituck Sound, North Carolina at two field locations having distinctly different sediment types: medium-to-fine-grained sand and fine-grained sand with approximately 10% mud content. Shear wave measurements were performed with bimorph transducers to generate and receive horizontally polarized shear waves in the 300 Hz to 1 kHz band, and compressional wave measurements were performed using hydrophones operated in the 5 kHz to 100 kHz band. Sediment samples were collected at both measurement sites and later analyzed in the laboratory to characterize the sediment grain size distribution for each field location. Compressional and shear wave speed and attenuation were estimated from the acoustic measurements, and preliminary comparisons to the extended Biot model by Chotiros and Isakson [J. Acoust. Soc. 135, 3264–3279 (2014)] and the viscous grain-shearing theory by Buckingham [J. Acoust. Soc. 136, 2478–2488 (2014)] were performed.