《Nature,5月14日,Proteomics of SARS-CoV-2-infected host cells reveals therapy targets》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-05-15
  • Proteomics of SARS-CoV-2-infected host cells reveals therapy targets

    Denisa Bojkova, Kevin Klann, Benjamin Koch, Marek Widera, David Krause, Sandra Ciesek, Jindrich Cinatl & Christian Münch

    Nature (2020)

    Abstract

    A novel coronavirus was recently discovered and termed SARS-CoV-2. Human infection can cause coronavirus disease 2019 (COVID-19), which has been rapidly spreading around the globe1,2. SARS-CoV-2 shows some similarities to other coronaviruses. However, treatment options and a cellular understanding of SARS-CoV-2 infection are lacking. Here we identify the host cell pathways modulated by SARS-CoV-2 infection and show that inhibition of these pathways prevent viral replication in human cells. We established a human cell culture model for infection with SARS-CoV-2 clinical isolate. Employing this system, we determined the SARS-CoV-2 infection profile by translatome3 and proteome proteomics at different times after infection.

  • 原文来源:https://www.nature.com/articles/s41586-020-2332-7
相关报告
  • 《Nature,5月14日,Pathogenesis and transmission of SARS-CoV-2 in golden hamsters》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-05-15
    • Pathogenesis and transmission of SARS-CoV-2 in golden hamsters Sin Fun Sia, Li-Meng Yan, Alex W. H. Chin, Kevin Fung, Ka-Tim Choy, Alvina Y. L. Wong, Prathanporn Kaewpreedee, Ranawaka A. P. M. Perera, Leo L. M. Poon, John M. Nicholls, Malik Peiris & Hui-Ling Yen Nature (2020) Abstract SARS-CoV-2, a novel coronavirus with high nucleotide identity to SARS-CoV and SARS-related coronaviruses detected in horseshoe bats, has spread across the world and impacted global healthcare systems and economy1,2. A suitable small animal model is needed to support vaccine and therapy development. We report the pathogenesis and transmissibility of the SARS-CoV-2 in golden Syrian hamsters. Immunohistochemistry demonstrated viral antigens in nasal mucosa, bronchial epithelial cells, and in areas of lung consolidation on days 2 and 5 post-inoculation (dpi), followed by rapid viral clearance and pneumocyte hyperplasia on 7 dpi. Viral antigen was also found in the duodenum epithelial cells with viral RNA detected in feces. Notably, SARS-CoV-2 transmitted efficiently from inoculated hamsters to naïve hamsters by direct contact and via aerosols.
  • 《Nature,4月30日,A SARS-CoV-2 protein interaction map reveals targets for drug repurposing》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-05-01
    • A SARS-CoV-2 protein interaction map reveals targets for drug repurposing David E. Gordon, Gwendolyn M. Jang, […]Nevan J. Krogan Nature (2020) Abstract The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds).