《广州健康院成功培育嵌入小分子药物调控基因剪刀的工具猪》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-01-29
  •   近日,中国科学院广州生物医药与健康研究院赖良学课题组在Genome Biology(《基因组生物学》)发表了题为“Doxycycline-dependent Cas9-expressing pig resources for conditional in vivo gene nullification and activation”的研究论文,该研究构建了可通过小分子药物灵活调控基因剪刀蛋白Cas9表达的工具猪,利用该工具模型,实现了成体大动物体内高效基因编辑,并首次构建了大动物原发性可转移的胰腺导管腺癌模型。

      猪不仅是重要的农业经济动物,也是重要的医学动物模型。随着基因编辑技术的发展,特别是CRISPR/Cas9技术的出现,越来越多具有重要应用价值的基因修饰猪模型被培育出来。构建这些模型主要通过受精卵注射或体细胞核移植技术来实现。然而,通过受精卵注射方式获得的基因编辑动物往往是嵌合体,需通过进一步的繁殖才能获得目标基因型,通过体细胞核移植方式获得基因编辑动物涉及复杂、低效的体细胞克隆过程,耗时、耗力且成本极高。

      为了解决以上问题,赖良学课题组多年来一直致力于培育嵌入基因剪刀(Cas9蛋白)的工具猪模型,早在2017年,培育出了以Cre重组酶为开关来启动Cas9蛋白表达的工具猪,首次实现了对成体大动物直接进行体内基因编辑,并将其成功地用于原发性肺癌模型的建立(Genome Research, 2017)。但该工具猪模型的应用需要在体内递送入Cre重组酶,其过程复杂、昂贵,且效率较低。另外,Cre重组酶对Cas9蛋白表达的启动是永久性的,而Cas9蛋白在体内的持续表达,会引起基因组损伤、脱靶效应及免疫反应等不利影响。

      四环素诱导基因表达系统可通过简单的小分子药物Dox灵活地调控外源基因的表达时间与表达量,且具有简单、高效及易操作的特点。2022年,赖良学课题组通过基因编辑技术将该调控系统引入猪体内,培育出了Dox诱导外源基因表达工具猪模型,并证明了其对任意外源基因的可调控表达的有效性(Science China Life Sciences, 2022)。在本次研究成果中,研究人员进一步将Dox诱导外源基因表达系统和Cas9蛋白一起嵌入猪体内,培育出了带有升级版基因剪刀的工具猪。

      研究人员首先证实,小分子药物可对工具猪体内的Cas9蛋白表达时间和表达剂量加以灵活调控,即Cas9表达由药物施用与撤除而加以启动和关闭,而表达量受给药剂量控制。另外,通过对怀孕母猪进行药物处理,小分子药物Dox可跨过胎盘屏障,实现胎儿体内剪刀蛋白Cas9的高效诱导表达。接着,研究人员进一步证实,诱导表达的剪刀蛋白Cas9不仅可以切割基因组,导致基因失活及染色体重排,还可以采用截短失活型sgRNA及转录激活蛋白组合,实现内源靶标基因的表达激活。

      为了验证利用该工具模型进行体内基因编辑的效果,研究人员将包装有靶向两个抑癌基因(TP53、LKB1)的sgRNAs和人KRASG12D表达框的腺相关病毒通过胰腺导管和/或直接胰体注射至胰腺内,诱导产生致癌基因突变。21周后,猪出现明显的腹胀和摄食减少,PET-CT结果显示腹腔内出现明显的代谢信号异常,解剖结果显示,胰腺内出现大量肿瘤,并且已转移至肝脏、肠及膈膜等器官/组织,组织切片结果也显示出现了典型的胰腺导管腺癌病理变化。

      研究团队获得的Dox诱导Cas9表达猪模型,将为直接进行体内基因编辑、体内基因文库筛选及体内基因表达调控提供理想的工具。

      另外,研究人员还在该工具基础上,通过时空调控Cas9表达,建立了一步体细胞克隆法即可获得能够稳定遗传的时空特异性单或多基因敲除猪模型的策略,为后续构建各种用途的新型条件性基因敲除猪模型提供了极大便利,也为细胞谱系示踪模型构建、基因治疗过程中Cas9蛋白的安全性评估等研究提供理想的工具。

      本研究中,中国科学院广州生物医药与健康研究院赖良学课题组金琴副研究员、刘晓艺博士研究生、庄镇鹏博士研究生以及广东省实验动物监测所黄家园博士为共同第一作者,赖良学研究员和王可品研究员为共同通讯作者。该研究成果得到了国家重点研发计划、国家自然科学基金、海南省重大科技计划、中国科学院青年创新促进会和中国科协青年人才托举工程等项目的资助。

  • 原文来源:http://www.gibh.cas.cn/xwdt/kydt/202301/t20230118_6601554.html;https://genomebiology.biomedcentral.com/articles/10.1186/s13059-023-02851-x
相关报告
  • 《广州生物院培育嵌入小分子药物调控基因剪刀的工具猪》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-02-08
    • 近日,中国科学院广州生物医药与健康研究院研究员赖良学课题组在《基因组生物学》(Genome Biology)上,发表了题为Doxycycline-dependent Cas9-expressing pig resources for conditional in vivo gene nullification and activation的研究论文,该研究构建了可通过小分子药物灵活调控基因剪刀蛋白Cas9表达的工具猪,利用该工具模型,实现了成体大动物体内高效基因编辑,并首次构建了大动物原发性可转移的胰腺导管腺癌模型。   猪不仅是重要的农业经济动物,也是重要的医学动物模型。随着基因编辑技术的发展,特别是CRISPR/Cas9技术的出现,越来越多具重要应用价值的基因修饰猪模型被培育出来。构建这些模型主要通过受精卵注射或体细胞核移植技术实现。然而,通过受精卵注射方式获得的基因编辑动物往往是嵌合体,需进一步的繁殖才能获得目标基因型,通过体细胞核移植方式获得基因编辑动物涉及复杂、低效的体细胞克隆过程,耗时、耗力且成本极高。   为了解决以上问题,赖良学课题组多年来致力于培育嵌入基因剪刀(Cas9蛋白)的工具猪模型,2017年,培育出了以Cre重组酶为开关来启动Cas9蛋白表达的工具猪,实现了对成体大动物直接进行体内基因编辑,并将该工具猪成功地用于原发性肺癌模型的建立(Genome Research,2017)。但该工具猪模型的应用需在体内递送入Cre重组酶,其过程复杂、昂贵,且效率较低。另外,Cre重组酶对Cas9蛋白表达的启动是永久性的,而Cas9蛋白在体内的持续表达,会引起基组织损伤、脱靶效应及免疫反应等不利影响。   四环素诱导基因表达系统可通过简单的小分子药物Dox灵活地调控外源基因的表达时间与表达量,且具简单、高效及易操作的特点。2022年,赖良学课题组通过基因编辑技术将该调控系统引入猪体内,培育出了Dox诱导外源基因表达工具猪模型,并证明了该模型对任意外源基因的可调控表达的有效性(Science China Life Sciences,2022)。该研究中,科研人员进一步将Dox诱导外源基因表达系统和Cas9蛋白一起嵌入猪体内,培育出具升级版基因剪刀的工具猪。   科研人员证实,小分子药物可对工具猪体内的Cas9蛋白表达时间和表达剂量加以灵活调控,即Cas9表达由药物施用与撤除加以启动和关闭,而表达量受给药剂量控制。另外,通过对怀孕母猪进行药物处理,小分子药物Dox可跨过胎盘屏障,实现胎儿体内剪刀蛋白Cas9的高效诱导表达。科学家进一步证实,诱导表达的剪刀蛋白Cas9不仅可以切割基因组,导致基因失活及染色体重排,还可采用截短失活型sgRNA及转录激活蛋白组合,实现内源靶标基因的表达激活。   为验证利用该工具模型进行体内基因编辑的效果,科研人员将包装有靶向两个抑癌基因(TP53、LKB1)的sgRNAs和人KRASG12D表达框的腺相关病毒通过胰腺导管和/或直接胰体注射至胰腺内,诱导产生致癌基因突变。21周后,猪出现明显的腹胀和摄食减少,PET-CT结果显示腹腔内出现明显的代谢信号异常,解剖结果显示,胰腺内出现大量肿瘤,且已转移至肝脏、肠及膈膜等器官/组织,组织切片结果也显示出现了典型的胰腺导管腺癌病理变化。   科研团队获得的Dox诱导Cas9表达猪模型,将为直接进行体内基因编辑、体内基因文库筛选及体内基因表达调控提供理想的工具。   另外,科研人员还在该工具基础上,通过时空调控Cas9表达,建立了一步体细胞克隆法即可获得能够稳定遗传的时空特异性单或多基因敲除猪模型的策略,为后续构建各种用途的新型条件性基因敲除猪模型提供了便利,也为细胞谱系示踪模型构建、基因治疗过程中Cas9蛋白的安全性评估等研究提供理想的工具。   研究工作得到国家重点研发计划、国家自然科学基金、海南省重大科技计划项目、中国科学院青年创新促进会和中国科协青年人才托举工程项目等的支持。
  • 《广州健康院在可诱导外源基因表达工具猪培育及其应用取得新进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-05-22
    •  近日,中国科学院广州生物医药与健康研究院赖良学课题组在Science China Life Sciences在线发表了题为Double knock-in pig models with elements of binary Tet-On and phiC31 integrase systems for controllable and switchable gene expression的研究论文,这项研究成功建立了仅需一轮体细胞克隆,即可获得可稳定遗传的药物调控外源基因表达的工具猪模型。   高表达外源基因的基因修饰猪在生物医药和农业领域具有重要的研究和应用价值。在猪体内引入可诱导基因表达系统,可以对外源基因表达进行精准的时空调控,有利于基因功能的深入剖析和拓展基因修饰猪的应用范围。长期以来,由于技术困难,稳定、高效的可诱导表达外源基因工具猪模型一直未能建立。随着基因编辑技术的快速发展,高效构建各种类型的基因突变,包括单基因敲入、单或多基因敲除/点突变的基因修饰猪模型成为可能,这为在猪上构建稳定可靠的可诱导基因表达体系提供了技术保障。   在研究过程中,该团队首先采用双位点定点敲入的策略,借助两种不同的抗性基因表达盒进行细胞筛选之后,结合体细胞克隆获得了四环素(Dox)诱导报告基因表达的工具猪模型。   为了提高后续获得Dox诱导其它基因表达猪模型的效率,在报告基因两侧引入了能被PhiC31重组酶识别的attP位点。在细胞以及克隆胚胎水平均能实现PhiC31介导的基因表达盒式置换,获得Dox诱导其它任意基因的基因修饰猪细胞,由此绕过复杂而又低效的传统基因敲入步骤。据此,该团队建立了过表达EGFP、hKRASG12D及OSKM的猪细胞系。   原癌基因KRASG12D突变是肿瘤病人中最常见的突变类型之一,条件性表达KRASG12D的动物模型在肿瘤研究中占有重要的作用。利用前述Dox诱导基因表达猪模型,该团队进一步建立了Dox诱导hKRASG12D(DIK)表达的猪品系。对从DIK猪分离获得的耳朵成纤维细胞及胎儿成纤维细胞进行Dox诱导,发现诱导后成纤维细胞具有更强的增殖能力,提示了其转化成肿瘤细胞的潜力。接着对7月龄的DIK猪进行长期的体内Dox诱导实验,在诱导后第8个月左右,DIK猪鼻子、口腔、阴囊部位出现肿瘤样增生,肿瘤样品表达鳞状细胞癌标志物CK5/6、CK18。进一步转录组测序分析表明,不同部位肿瘤样品间具有更相似的基因表达谱;GO分析富集到了细胞迁移、细胞运动、细胞粘附、细胞周期、细胞群体增殖和细胞通讯等生物过程;KEGG通路分析表明代谢及肿瘤等信号通路发生改变;Ras信号通路相关基因表达分析发现,许多活化Ras的下游效应蛋白,例如AFDN、PIK3CB、RASSF5、TIAM1、RIN1、RALBP1、RAPGEF5、PIK3R2和RALGDS均显著上调。综上,Dox诱导hKRASG12D表达可以驱动DIK猪体内肿瘤发生,DIK猪品系是肿瘤生物学研究的有力工具。   此外,可诱导表达外源基因工具猪,也是一种宝贵的基因资源,为后续建立各种用途的猪模型提供了极大便利。双位点敲入猪遵循孟德尔遗传定律,将Dox诱导报告基因表达猪与野生型猪交配扩繁,可获得四种不同基因型(Rosa26rtTA/WTHipp11TRE3G-tdTomato/WT, Rosa26WT/WTHipp11TRE3G-tdTomato/WT, Rosa26rtTA/WTHipp11WT/WT和Rosa26WT/WTHipp11WT/WT)后代。例如,对于Rosa26rtTA/WTHipp11TRE3G-tdTomato/WT基因型猪,可以将细胞水平的重组酶介导的基因盒式置换与体细胞核移植相结合,培育Dox诱导目的基因表达猪模型;鉴于体细胞核移植低效且昂贵,而基因盒式置换在胚胎中非常高效,因此,也可以采用将phiC31 mRNA和供体DNA直接注射到源自Dox诱导报告基因表达猪群的受精卵的方法培育Dox诱导目的基因表达猪;对于Rosa26WT/WTHipp11TRE3G-tdTomato/WT基因型猪,可以通过由组织特异性启动子控制的rtTA元件的单位点敲入,培育可用于谱系追踪的组织特异性诱导报告基因表达猪模型;类似地,对于Rosa26rtTA/WTHipp11WT/WT基因型,可以通过单位点敲入TRE3G驱动目的基因表达盒,培育Dox诱导表达猪品系。   本研究中,中国科学院广州生物医药与健康研究院赖良学课题组金琴博士为第一作者,赖良学研究员和王可品副研究员为共同通讯作者。该研究成果得到了国家重点研发计划、国家自然科学基金、广东省科技计划、海南省重大科技计划、中国科学院青年创新促进会和中国科协青年人才托举工程等项目的资助。