《2023年度《麻省理工科技评论》“35岁以下科技创新35人”亚太区入选者正式发布,其中生命健康领域9人》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-11-02
  • 本文内容转载自“ DeepTech深科技”微信公众号。原文链接: https://mp.weixin.qq.com/s/WnqInle0frE-dr6UdheKng

    2023年11月2日, 据DeepTech深科技报道, 2023 年度《麻省理工科技评论》“35 岁以下科技创新 35 人”亚太区入选名单发布。其中生命健康领域9人,名单如下(*按姓氏首字母排序):

    陈立

    陈立于 2017 年创立北京立康生命科技有限公司,致力于开发以肿瘤新生抗原为靶标的个性化肿瘤疫苗和 T 细胞药物。他带领本土化团队采取的疫苗路线是编码肿瘤新生抗原 mRNA 转染的 DC 疫苗,是国际上首家使用这种疫苗形式进行临床实践的企业。有效提高了 mRNA 的生物利用度,同时也解决了 mRNA 的递送问题。仅用时 4 年时间,陈立就带领旗下首个产品 LK101 获得 IND 批准,进行临床试验。在这之前,该产品通过 301 医院的伦理审查,开展了一项临床研究,目前共计入组 24 例肝癌患者,已经观察到良好的安全性和有效性,最早入组的两例肝癌患者已经实现了超过 40 个月的无病生存。

    个性化 mRNA 肿瘤疫苗的研发整体尚处于早期阶段,仍面临诸多挑战,如肿瘤新生抗原预测的准确性、肿瘤新生抗原选择的合理性、疫苗生产制备工艺的稳定性和时效性等。针对这些问题,立康已前瞻性地进行了技术布局,现已搭建生物信息学平台 LNEATM、 高通量抗原/T 细胞受体筛选平台 HATSPTM、 体外转录 mRNA 技术平台以及大规模自动化封闭式细胞药物生产平台等。目前,陈立带领立康聚焦精准肿瘤免疫疗法,正在基于通用型技术平台全线布局肿瘤新生抗原分析诊断、新抗原肿瘤疫苗和 T 细胞疗法等多条管线,充分挖掘肿瘤新生抗原潜力。

    Kit Wayne Chew

    自 2016 年以来,Kit Wayne Chew 一直致力于研究有前景的藻类和微藻类技术,以产生能够造福国家和社区的生物大分子。其应用食物垃圾堆肥作为微藻培养的有机培养基来替代部分无机培养基,获得了更好的生产力和更高的生物质生化含量。

    他还开发了综合生物分离工艺,利用新型提取技术生产有价值的生物分子。这项技术被称为液体双相/三相系统,它使用两个不相溶相来分离和提纯所需的化合物。该技术已被证明可以从各种来源获得高回收率和高纯度的功能化合物,在生物制药和药妆工业中具有应用潜力。

    总的来说,他的研究强调可再生资源管理的潜力,以及开发具有成本效益和更绿色的下游加工。

    刘秀云

    刘秀云主要从事神经重症医学与生物医学工程交叉领域的研究工作,先后承担多项科研项目,并于 2021 年作为项目负责人主持科技部国家重点研发计划“生物信息融合”重点专项1项,项目总经费 1.75 亿,中央财政经费 4094 万,致力于解决国产非侵入神经电生理信号高精度采集与计算芯片关键技术研究及应用,突破神经采集与计算芯片“卡脖子技术瓶颈”。

    她发明的多窗个性化最佳脑灌注技术已被应用于加拿大温哥华总医院及美国约翰霍普金斯医院等临床诊断中,用于千百名心脏搭桥手术的患者和脑创伤患者的救治;其还在国内首次引入脑脊液动力学评估技术,用于脑积水患者的精确诊断与干预,目前已在天津环湖医院、天津总医院使用,将患者的诊断时间从 3 天缩短到 30 分钟,使 300 多名脑积水患者受益;开发的个性化脑血流调节评测算法已嵌入到 ICM+ 软件中,该软件在全球多个国家的 100 多所医院应用。目前,她带领团队正在进行脑氧监测、麻醉监测等方向的技术突破,研发国产高端医疗器械,为中国抢占相应领域技术高地做奠基。

    倪大龙

    倪大龙专注于基于纳米材料的修复医学(简称“纳米修复医学”)领域,通过合成新的纳米结构/纳米酶,利用协同策略来修复急性肝/肾/肺损伤、炎症性肠病、骨关节炎/骨质疏松症等,并揭示其体内修复机制。

    倪大龙领导的“纳米修复医学”实验室旨在利用纳米技术作为工具,修复急性或慢性器官损伤,针对不同器官损伤微环境,提供器官损伤修复的创新策略:1)直接清除活性氧这一主要诱因来修复急性肝/肾/肺损伤;2)结合临床病人样本中过表达的基因,清除活性氧和基因疗法共同修复骨关节炎;3)针对疾病特殊的酸性/免疫微环境,利用酸中和/免疫调节作用共同逆转骨质疏松。在临床上没有治疗器官损伤的有效方法/药物的情况下,倪大龙的研究为临床提供了有价值的参考。目前,他正在与瑞金医院多个科室和药厂在具备转化潜力的项目开展密切合作。

    Soujanya Poria 

    Soujanya Poria 的研究主要就集中在多模态人工智能。他通过融合音频、视觉和文本线索,来探索多模态情感分析的深度学习方法,以对多模态数据进行情感分析。Soujanya 发布了广泛使用的 MELD,这是一种用于对话中情绪识别的多模态多方数据集。并提出了基于循环神经网络和图卷积神经网络的创新深度学习架构,用于对说话者状态进行建模对话时的情绪检测。

    除了多模态对话人工智能之外,Soujanya 还完成了常识人工智能方面的多项关键研究工作。例如,他开发了可以将常识知识注入深度学习网络的技术,以提高其在领域适应和对话理解等各种下游任务上的性能。后来,他扩大了研究范围,深入研究生成式人工智能,引入了通过理解对话参与者的情感状态来生成具备同理心的对话的技术。他还研究了多模态生成式人工智能,例如 Tango 这样一种根据文本指令生成音频的模型。Soujanya 在多模式会话人工智能和常识推理方面做出了重大贡献。他的工作可能会显著提高计算机解释复杂数据并提供信息的能力,并自动向用户提供有价值的信息。

    任翔

    美国南加州大学任翔副教授研究通过扩大模型的通用性来构建可泛化的 NLP 系统,以便可以处理各种语言任务和使用场景。他近年的研究工作关注于开发模型和算法,以及设计新型评估协议。他提出的数据集和评估方法,帮助在各种使用场景下暴露出最新模型的缺陷和不足;他还通过有指导模型学习所需的归纳偏置(inductive bias),来帮助模型在各种情况下泛化;同时,他通过利用外部知识库和新颖的学习算法为模型做知识增强,以使 NLP 模型具备常识和复杂推理能力。

    任翔教授先后获得 ACL 2023 杰出论文奖 NAACL 2022 杰出论文奖、ACM SIGKDD 博士论文奖和 Web 会议最佳论文亚军等多个行业奖项认可。

    他未来的研究目标将继续聚焦在开发通用人工智能模型和算法,以实现人与机器设备的轻松、自然和可信赖的交互,使自然语言系统可以适用于各种任务和场景。

    余嘉明

    余嘉明的研究开创了微波辅助生物精炼的新研究领域,通过创新的工程解决方案,将生物资源高效节能地转化为平台化学品和功能化材料。

    余嘉明致力于推进催化系统中微波效应的知识,尤其是在原料微波活化、微波催化剂协同作用、溶剂介导催化等领域。她设想利用“微波超热”来设计高效生物精炼工艺,以此作为实现厨余循环经济的途径。该技术的成功应用将实现食物垃圾处理技术多样性并增强其管理系统韧性。目前生物处理占据厨余回收业务最大的市场份额,微波辅助生物精炼工艺将为此带来革命性的变化。

    袁硕峰

    袁硕峰曾以共同一作的身份在《柳叶刀》上发表了世界上第一篇关于 SARS-CoV-2 和 COVID-19 的科学论文。这项开创性的工作记录了人类感染 SARS-CoV-2 和 COVID-19 疾病的关键特征,包括人际传播、家族聚集和无症状感染等。他创建了COVID-19 的仓鼠模型,基于此阐释 Omicron 关注变体(VOC)比之前的 SARS-CoV-2 变体更具传播性和传染性。利用该模型开展研究,结果支持 COIVD-19 加强疫苗策略。

    他结合 RNAi 和多组学分析等尖端技术的应用确定了 COVID-19 的新致病机制和治疗靶点,包括病毒解旋酶和蛋白酶,以及宿主甾醇调节元件结合蛋白和二酰基甘油酰基转移酶。这些项目中建立的概念被用来设计和开发新的策略、方法和线索,用于早期和快速病毒诊断、减毒活疫苗和合成疫苗的设计,以及针对 SARS-CoV-2 或宿主的抗病毒疗法。

    赵春竹

    北京大学助理研究员赵春竹专注研究深脑成像,提出了最大化散射荧光收集光学构型,并和团队成功研制 2.17g 深脑成像微型化三光子显微镜,突破了此前微型显微镜的成像深度极限,首次实现对自由行为小鼠的大脑全皮层和海马神经元功能成像,为揭示大脑深部结构的神经功能连接机制提供了观测手段,开启了新的研究范式。

    赵春竹还成功研制了首个毫米视场微型化双光子显微镜,最大三维成像视野是此前微型化双光子显微镜的 6.6 倍,这一改进使神经科学家能够在允许动物自由运动的实验范式中,破译大脑神经元群体动态。未来他将继续研发新型成像仪器,进一步突破深脑成像极限,打造脑科学前沿基础研究的尖端工具。

  • 原文来源:https://mp.weixin.qq.com/s/WnqInle0frE-dr6UdheKng
相关报告
  • 《《麻省理工科技评论》新一届“35岁以下科技创新35人”中国区入选者正式发布!》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-07-12
    • 2024年7月11日,2024中国科技青年论坛暨《麻省理工科技评论》“35岁以下科技创新35人”(以下简称TR35)中国区发布仪式在上海闵行大零号湾科创大厦开幕。会上揭晓了2023年《麻省理工科技评论》“35岁以下科技创新35人”(TR35)中国入选名单。 其中生物领域的名单如下: 邓彦翔 宾夕法尼亚大学助理教授 入选理由:专注于开发全新空间组学技术,深度解析影响组织和器官内细胞特性和异质性的关键分子作用机制,为疾病诊断和治疗提供全新视角。特定的细胞类型及其组织方式与生物活动密切相关,因此解析细胞的空间信息对于深刻理解细胞生物学、发育生物学、神经生物学、肿瘤生物学等具有至关重要的作用。不过,现阶段人们对于在整个组织和生物体规模上的细胞空间信息仍然知之甚少。鉴于此,邓彦翔开始专注于开发新型空间组学技术,实现在细胞水平上对组织切片中的表观基因组、转录组和蛋白质组进行高空间分辨率映射。 2020 年,他开发了一种新型空间多组学技术(DBiT-seq),这一技术利用微流控平台将分子条形码递送到甲醛或 FFPE 固定的组织切片中,实现了对 mRNA 和蛋白质的空间二维编码,从而构建高空间分辨率的多组学图谱。这项技术能够在单细胞水平上对整个转录组和数十种蛋白质标志物进行高空间分辨率映射,与现有方法相比,具有更高的空间分辨率、高覆盖率和多组学能力。他还开发了两项全新的空间组学技术 Spatial-CUT&Tag 和 Spatial-ATAC-seq,首次实现了在空间和全基因组水平上观察组织发育的表观遗传机制,实现了与发育和疾病相关的表观遗传调节的空间映射,是生物医学领域的一项重大突破。空间组学技术已经催生了一系列新的应用,涵盖从植物生物学到对肿瘤微环境复杂相互作用的研究。值得一提的是,早在 2020 年,一家名为 AtlasXomics Inc. 的公司落地并推进邓彦翔研发的空间组学技术商业化。 李斐然 清华大学深圳国际研究生院助理教授 入选理由:专注于生命数字化研究,通过整合 AI 和系统生物学等研究方法开发前沿性的数字生命框架,并应用于合成生物学和生物医学领域。数字孪生模型(digital twin)是实体对象的精确虚拟模型,也是最新一代技术变革的先锋。其可显著提升人们对复杂生物系统的理解和干预能力,有潜力广泛应用于细胞工厂设计、工业发酵条件优化、药物开发及个性化诊疗等。李斐然的研究围绕生命数字化展开,并取得了多项重要进展。针对数字生命模型构建中酶参数实验测量缓慢的瓶颈,她开发了首个深度学习预测酶参数的方法——DLKcat,加速推进理解蛋白序列-结构-功能关系,也为酶设计及酶改造任务提供了通用的下游功能表征方法。随后,她基于 DLKcat 构建了超大规模的开源酶数据库——GotEnzymes,其涵盖超过两千万个酶-底物对的酶活参数,为基础和应用生物学领域表征了海量的酶元件。 她还开发了多生命学过程耦合模块,实现了数字生命从代谢到多生命学过程建模的跨越,包含详尽的蛋白分泌模块,模型涵盖的反应数从 4000 增长至 37000 个,并提供了理性设计方法。后续,李斐然提出了模型自动化构建和迭代方法,率先实现了模型的可追溯性和可重复性,为非模式生物建模提供了自动化方法,进而助力从微生物建模转向更为复杂的人类细胞建模。她目前正在与企业合作,推动现有数字生命模型和垂直领域大语言模型在代谢工程、医学和生物制药领域中的应用。 秦为 清华大学助理教授 入选理由:通过开发化学驱动的组学技术系统描绘生物分子的交通图谱,为挖掘疾病标志物提供新思路。秦为开发了针对蛋白质空间动态转运的新型邻近标记技术 TransitID,并利用该方法首次描绘了细胞内不同细胞器之间蛋白转运图谱,同时鉴定了通过不同途径从癌细胞转移到巨噬细胞中的蛋白。此突破填补了研究蛋白转运领域的技术空白,为研究细胞间通讯等动态过程提供了有力工具。 目前,秦为成立课题组,带领团队致力于在化学生物学、分子探针和时空蛋白质组学等多个领域深入研究,进一步开发多维度的化学蛋白质组学技术,来探索重要的基础生物学难题和挖掘重大疾病的新型分子靶标。其长期目标是推动蛋白质组学从一维到四维的技术革新,从而描绘出细胞内每一个蛋白质在时间、空间、功能和相互作用四个维度中的生命轨迹,精确理解蛋白质功能的动态调控。未来,秦为计划将开发的技术应用于肿瘤免疫领域,探索肿瘤细胞和微环境中免疫细胞间的不同通讯机制,为发展新型肿瘤免疫疗法提供新的思路。 桂淼 浙江大学良渚实验室研究员 入选理由:运用冷冻电镜和 AI 辅助原子建模,明确纤毛类细胞器核心骨架的分子组成,构建纤毛相关遗传病的候选致病基因库,并用于指导临床分子诊断和疾病机制研究。纤毛病是一大类遗传病,涉及因纤毛功能障碍引起的生殖不育、反复呼吸系统感染、内脏异位等全身多器官的异常,其临床分子诊断和治疗一直是难点。利用传统方法仍有大量致病基因未被发掘,且基因突变引起纤毛组装和运动缺陷的机制尚不清楚。这些困难背后的关键点就在于,纤毛这种大型细胞器的具体分子组成和组装机制尚未被解析。为解决这一难题,桂淼从结构生物学角度出发,转变传统研究思路,以蛋白质为切入点,深度解析纤毛复杂的分子组成和组装机制。 他建立了一套基于冷冻电镜结构解析和 AI 结构预测的快速精准蛋白质鉴定和原子模型搭建方法,近乎完整地解析了包含 400 万个原子的纤毛轴丝的三维结构,成功鉴定出了 200 余种纤毛组成蛋白质,极大丰富了纤毛病的候选致病基因库。这些研究一方面回答了从原子水平理解纤毛组装和运动的细胞生物学基本问题,另一方面提出了原发性纤毛运动障碍等纤毛相关遗传病诊断的新思路。建立独立实验室后,他继续关注不同细胞和物种纤毛结构的差异,鉴定了多种精子特异的微管内结合蛋白,并结合临床分析定义了一类新的弱精症亚型。这些工作建立了纤毛病研究的新范式——基于结构导向的遗传病致病基因的鉴定,也对未来其他疾病的研究具有推广意义。 王茜 哥伦比亚大学助理教授 入选理由:成功鉴定 HIV-1 囊膜蛋白上影响构象、稳定性及抗原性变化的关键氨基酸位点,为疫苗设计提供帮助;深入研究新冠突变株、分离鉴定多株新冠高效中和抗体和评估新冠 mRNA 疫苗的免疫效果等,助力新冠防疫策略的调整和疫苗的更新迭代。王茜解析了艾滋病病毒囊膜蛋白在体内的进化与变异、膜蛋白构象变化与免疫逃逸的分子机制,同时深入探究关键氨基酸位点突变对囊膜蛋白的构象和免疫原性的影响,为艾滋疫苗设计提供新方案。并且,她利用在膜蛋白方向的研究经验,开发了非中和抗体在细胞内干扰病毒颗粒组装的策略,从而拓宽了其在基因治疗艾滋病方面的潜在应用。 自 2019 年新冠疫情暴发以来,王茜投入新冠病毒相关研究。她主要研究新冠各个突变株膜蛋白的各种理化性质,其研究的突变株涵盖了主要的 Omicron 突变株。这一项系统性工作为疫情防控提供了详实的科学数据,帮助政府和民众第一时间了解 Omicron 突变株逃逸宿主免疫压力和提高受体亲和力的能力,及时调整疫情的防控策略。此外,她还评估新冠 mRNA 疫苗的免疫效果,为疫苗的更新迭代提供指导。她还在各种突变株流行早期评估临床抗体中和能力,及时帮助调整新冠治疗手段,并深入分析各个突变株所携带的刺突蛋白突变位点在逃逸不同表位中和抗体、改变受体结合能力上的作用,不仅为揭示病毒进化方向提供了分子水平的解释,同时为后续判断新发突变株的流行趋势提供科学依据。 庄友文 上海交通大学医学院研究员 入选理由:从多个层面阐明了阿片类药物与受体的作用机制,为设计更加安全的新型阿片类镇痛药提供了精确模板和创新途径,助力应对全球蔓延的“阿片危机”。全球 20%-40% 成年人受慢性疼痛困扰,阿片镇痛药成为治疗疼痛的主要手段之一。传统阿片类镇痛药在发挥治疗效应的同时,也伴随系列严重的毒副作用,包括呼吸抑制和成瘾等,极大限制了其临床使用。庄友文致力于对阿片受体的活性和信号传导调控分子机制展开深入研究,以期为高效低毒的新型阿片镇痛药的合理设计和发现提供新思路。他首次揭示了吗啡和芬太尼分别与阿片受体 μOR 结合的精准结构,澄清了领域内对吗啡和芬太尼结合模式混乱的认识,并明确了芬太尼衍生物与 μOR 的构效关系,对未来更安全的阿片类镇痛药的设计提供了模板。 他还发现不同药物分子可以激活 μOR 产生多种构象和活性状态,揭示了配体介导 μOR 产生偏向信号的新机制,并设计了新型的信号偏向性分子,为后续 μOR 的 G 蛋白偏向性药物定向设计和进化明确了方向。他系统地阐释了内源性阿片肽选择性识别和激活阿片受体的机理,提出了阿片受体遵循一套保守的激活机制,发现了多个新的阿片受体潜在可成药口袋,将有效促进新型阿片药物的开发。他的研究解决了积淀在阿片受体药理领域长期未解决的多个问题,在完善对阿片受体生物学和药理特性认知的同时,明确了新型阿片药物设计开发的底层思维逻辑,为新一代阿片药物的发现指明了方向。 戴小川 清华大学生物医学工程学院助理教授 入选理由:开发类组织支架生物电子传感器,打破人造电子传感器与活体组织的物理壁垒,为植入式脑机接口避免排异反应提供了新方法。生物电子传感器在尺寸、力学、结构上与活体组织大相径庭,二者物性的失配会导致生物电子传感器在植入活体组织后引起排异反应,这是限制电子-组织稳定融合的主要瓶颈。戴小川致力于解决生物电子与活体组织的理想界面问题。他提出了一种模仿组织支架的生物电子传感器概念,将生物电子器件完美地“隐身”于活体组织之中,并通过微纳加工技术使其特征尺寸、弯折刚度、多孔结构均与天然组织支架相当,打破了人造电子传感器与活体组织的物理壁垒。 这种类组织支架生物电子能够与活体组织在三维空间中交织在一起并长期融合,在不改变活体组织本身的生存微环境的前提下,构建出生物-电子双向信息交流界面。在此基础上,戴小川将类组织支架生物电子应用于能够免疫逃逸的脑机接口,实现高植入精度、低植入损伤、长期稳定的神经界面,并与多模态神经技术相结合,建立多模态融合脑机接口技术体系。2023 年,戴小川作为首席科学家创办公司将相关技术商业化,致力于打造一套高度集成且易用的脑机接口基础设施技术平台,持续推进类组织支架生物电子学在脑科学研究、脑疾病诊断与治疗、脑机接口与人机混合智能领域绽放光彩。 刘晓东 西湖大学特聘研究员 入选理由:深度解析细胞重编程中细胞命运调控的重要分子机制,并开发用于治疗帕金森病等的再生医学细胞疗法。诱导多能干细胞(iPSC)的诞生是干细胞领域一个具有里程碑意义的突破,有望规避伦理限制以及免疫排斥等问题。目前,iPSC 已在疾病模型、药物筛选、以及细胞治疗和再生医学等领域发挥了重要作用。然而,人体细胞重编程技术还面临着诱导效率低、表观遗传记忆以及潜在成瘤性风险等问题,这很大程度上也阻碍了这项技术的转化应用。 为了解决这些难题,刘晓东一直致力于深度剖析重编程的底层分子机制,并取得了一系列成果。他建立了不同阶段多能干细胞状态的直接诱导方法,并发现命运转换核心调控转录因子,该研究首次揭示了在重编程过程中细胞命运被调控至早期胚胎发育的状态。后续,他利用重编程中多细胞谱系的发现,构建了首个完整的 3D 类囊胚结构,这项研究构建出了世界首个由皮肤细胞诱导发育成的类囊胚结构。他还基于对重编程细胞命运调控的单细胞水平转录组和表观组解析,建立了滋养层干细胞直接诱导方法及消除表观遗传记忆和异常的重编程新方法,有望解决 iPSC 产业化中面临的挑战。 其他领域名单如下: 靖礼 OpenAI研究员 杨植麟 月之暗面Kimi创始人兼CEO 罗姗姗 马克思·普朗克陆地微生物研究所博士后 谢赛宁 纽约大学计算机科学助理教授 王琛  清华大学材料学院副教授;北京市集成电路高精尖创新中心研究员 栾海文 加利福尼亚大学圣迭戈分校机械与航空航天工程系助理教授 薛潇 代尔夫特理工大学博士后 祖丽皮亚·沙地克 上海交通大学副教授 刘文柱 中国科学院上海微系统与信息技术研究所研究员 王飞 上海交通大学长聘教轨副教授 屈峰 西北工业大学教授 陈鹏程 复旦大学材料科学系青年研究员 常林 北京大学助理教授 付先彪 丹麦科技大学玛丽·居里博士后研究员 鲍凡 生数科技联合创始人兼首席技术官 董岩皓 清华大学助理教授 封硕 清华大学自动化系助理教授 孙鹏展 澳门大学助理教授 万雅婷 阿卜杜拉国王科技大学助理教授 王春阳 中国科学院金属研究所研究员 王翔 中国科学技术大学教授 张晔 南京大学副教授 袁翔 华东师范大学教授 胡耀文 北京大学物理学院助理教授、研究员 季力 复旦大学微电子学院教授 李晓娜 宁波东方理工大学(暂名)副教授 刘阳 华中科技大学教授
  • 《12位生命科技领域学者入选《麻省理工科技评论》公布的“35岁以下科技创新人”榜单》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-09-14
    • 据智药局报道,9月12日,全球知名杂志《麻省理工科技评论》公布了“35岁以下科技创新人”榜单,介绍了来自生物技术、人工智能、计算科学、机器人以及抗全球气候变化这五大领域的35名新星。 其中12位学者针对生命科技,包括AI制药领域做出了突出的贡献,智药局针对它们的学术经历以及成就做出了梳理。                                                                                               人工智能、机器人与计算 Connor Coley 年龄:29岁 就职背景:麻省理工学院 长期以来,开发新分子的最大瓶颈之一是合成相关分子并进行测试,分子的合成过程通常需要耗费大量时间。 29 岁的 Connor Coley 现在是麻省理工学院化学工程系和电气工程与计算机科学系的助理教授,他开发了一款开源工具ASKCOS,它使用神经网络自动规划有机合成,包括包括试剂、催化剂和反应条件。 ASKCOS通过分析已知分子及其当前特性,然后预测微小的结构变化可能会出现的结果,然后建议具有这些特性的新分子。 如今这套工具被十几家制药公司和数万名化学家用于生产,以创造新药物、新材料和更高效的工业流程。 Renee Zhao 年龄:33岁 就职背景:斯坦福大学 赵芮可(Renee Zhao),33岁,斯坦福大学机械系助理教授,主要研究用于集成变形、组装、传感和导航的多功能机器人系统的刺激响应软复合材料。 赵和她的团队利用了 Kresling 折纸的几何特征来实现运动、折叠特性用于医疗功能,创造了微型圆柱形机器人,并嵌入的微小磁性材料颗粒使赵能够利用磁场来操纵该设备。 这些机器人可用于分解血栓、将药物输送到特定区域或提供身体内部运作的图像。赵的实验室目前正在试验可生物降解的材料,这也将使机器人在完成任务后能够在体内安全分解。 PranavRajpurkar 年龄:28岁 就职背景:哈佛医学院 28岁的Pranav Rajpurkar现在是哈佛大学生物医学信息学系的助理教授,专注于推进医学人工智能,特别是在医学图像解读领域。 以往人工智能主要依靠放射科医生手动标记学习,通常需要上万张标记样本,Pranav Rajpurkar开发了一种让人工智能自学准确解读医学图像的方法,无需人类的任何帮助。 该模型名为 CheXzero,运用自监督学习 CheXzero 可以使用海量数据库来学习发现潜在问题,而无需人工输入来先准备数据,已经可以达到人类专家的水平,可以进一步提高其性能并扩展其可以处理的图像类型。                                                                                                          生命科学 Tyler Allen 年龄:31岁 就职机构:杜克癌症医学院 Tyler Allen目前是杜克癌症研究所的博士后研究员,他开发了一种实时成像系统,使研究人员能够观察肿瘤细胞如何在体内移动,这可能为更有效的癌症治疗铺平道路。 他的团队将人类癌细胞注入斑马鱼体内,并对其进行了基因改造,使其血管发光。他们使用高功率激光显微镜观察癌细胞穿过和离开血流的过程,特别注意那些成群移动的癌细胞,因为它们形成肿瘤的风险更高。 Nicole Black 年龄:30岁 就职机构:Desktop Metal 哈佛大学读研时,Nicole Black 运用3D打印技术设计了仿生鼓膜, 这些仿生鼓膜能刺激细胞在器件降解过程中在打印路径上再生组织。 根据这一成果,Nicole Black与他人共同创立了一家公司 Beacon Bio,以进一步开发这些成果。 该公司很快被 3D 打印公司 Desktop Metal 收购,Black 目前担任该公司医疗保健部门 Desktop Health 的生物材料和创新副总裁。 Anna Blakney 年龄:33岁 就职机构:加拿大温哥华不列颠哥伦比亚大学 Anna Blakney,现年33岁,目前是是加拿大温哥华不列颠哥伦比亚大学的生物医学工程学院助理教授,RNA 疫苗公司 VaxEquity 的联合创始人。 Anna Blakney在自扩增 mRNA 疫苗方面的研究做出了突出贡献,这项技术与 Moderna 和辉瑞疫苗中使用的技术非常相似,但允许患者接受较低剂量的 RNA,这有助于保持较低的疫苗成本,并且减少副作用。 Tetsuhiro Harimoto 年龄:32岁 就职机构:哈佛大学Wyss研究所 Tetsuhiro Harimoto是哈佛大学Wyss研究所一名博士后,过去几年他一直致力于将细菌转变为“智能活体药物”,这种药物可以通过训练自动寻找并攻击癌症。 在哥伦比亚大学获得博士学位时,他利用合成生物学工具证明了这是可能的。他向一些细菌添加了一些基因,让它们能够检测到它们何时处于恶性肿瘤内部(低氧水平在肿瘤中很常见)。这项研究提供了生产抗癌药物的能力。 他的下一个项目是将这些技术结合在一起,创造出能够感知癌细胞的细菌,并希望能当场杀死癌细胞。 Julia Joung 年龄:32 就职机构:博德研究所 Joung此前在CRISPR先驱张锋教授实验室攻读博士学位,开发出一种CRISPR筛选技术,这一激活性CRISPR筛选技术可以用于分析基因组中广泛的非编码区域。利用这一技术,她发现癌细胞能够通过启动某些基因表达,对CAR-T疗法和其它免疫疗法产生耐药性。 今年1月,作为张锋团队绘制首个人类胚胎干细胞分化转录因子图谱,Julia Joung作为第一作者,该研究建立了首个涵盖人类全部转录因子的开放阅读框的条形码库,为后续研究奠定基础。 Christina Kim 年龄:33岁 就职机构:加州大学戴维斯分校 Christina Kim,33岁,加州大学戴维斯分校神经病学助理教授。 她开发了一种技术来识别参与不同动物行为的神经细胞,可能会为抑郁症、焦虑症、毒瘾和酒精成瘾等神经精神疾病提供更好的治疗方法。 目前她正在完善这项被称为快光和钙调节表达的技术,以更好地了解大脑信号在分子水平上的工作原理。最终,它可以帮助推动更有针对性和更有效的治疗方法的开发。 Jiawen Li 年龄:34岁 就职机构:阿德莱德大学 Jiawen Li 现34岁,澳大利亚阿德莱德大学高级讲师,专注于光子学与高级传感研究所 (IPAS) 的血管内成像项目。 Li 创新成果是一款超薄 3D 打印内窥镜,旨在探测血管内部并生成一生中形成的斑块的高质量图像,用于判断哪些患者心脏病发作的风险最大。 李和她的同事已经成功在猪身上测试了该装置,并正在努力进行人体临床试验。除了改善心脏病的诊断之外,他们认为它最终可以帮助医生检测难以成像区域的癌症,包括胆管和肺部。 Danielle Ma i年龄:34岁 就职机构:斯坦福大学 Danielle Mai,34岁,现为斯坦福大学化学工程系助理教授。她的斯坦福大学实验室正在利用百日咳或百日咳中的蛋白质制造生物工程新材料,其功能类似于人类皮肤和肌肉。 通过识别天然存在的蛋白质,然后在实验室中复制它们,Danielle Mai可以设计出模仿人类肌肉的特性和功能的生物聚合物,特别是它们的拉伸和收缩能力,而迄今为止在工程组织中很难利用这些特性。 Mai 设想了这些新型生物聚合物的多种应用,包括软机器人、再生医学和可持续生产的非动物肉类。 Courtney Young 年龄:32岁 就职机构:MyoGene Bio 32岁,基因编辑初创公司MyoGene Bio的创始人,研发用于治疗杜氏肌不良症的基因疗法。 Young 和她在 MyoGene Bio 的团队使用 CRISPR-Cas9 可以改变患者的 DNA,恢复产生必要蛋白质的能力。 Young 和她的团队可以针对基因中常见的突变部分并将其去除,之后 DNA 可以自然修复。尽管 CRISPR-Cas9 已用于解决基因突变已有十年,但 Young 的研究突破了界限,证明了比之前想象的更大的缺失是可能的。 转载链接:https://mp.weixin.qq.com/s/D1ktRI4hXzW1EoCiYvQuyA