地震是滑坡灾害最主要的触发因素之一,尤其在我国青藏高原及周缘地区,新构造运动强烈,地震活动频繁,地震诱发滑坡灾害尤为显著。如2008年汶川地震,诱发了多达6万余处滑坡,滑坡造成的死亡人数约占地震总死亡人数的三分之一。理解颗粒剪切带在循环载荷作用下的动态响应,对于阐明地震诱发滑坡的触发机制至关重要,同时在地震学和颗粒物理等更广泛的领域具有重要意义。现有的预测方法由于未能充分考虑潜在的物理机制,难以准确预测许多实验和原位滑坡观测结果。滑坡动态触发机制(即从静态状态或极慢的蠕滑状态过渡到快速滑移)的影响因素仍然不明确。成都理工大学滑坡动力学研究团队通过环剪试验开展了动态加载下颗粒剪切带的内在物理机制研究,在强震诱发滑坡机理方面取得了重要研究进展。
研究通过环剪实验,探究了地震作用下颗粒状剪切带的动态响应机制。研究发现,除动态载荷引起的同震滑移外,随着动态加载循环次数的增加,还观察到了不同程度的震后蠕滑。这一现象凸显了同震弱化(剪切带疲劳)和随后的震后愈合的作用。通常在剪切带失稳之前会出现一种亚稳态,其特征为震后蠕滑显著增加。亚稳态可能起因于削弱的剪切抗力接近外加剪切应力,从而表现出从固态(或准固态)向流体态(塑性颗粒流)的相变。亚稳态可能揭示了剪切带的应力状态,并可作为滑坡失稳的前兆。研究发现了滑带破坏前的“亚稳定状态”,系统揭示了滑带强度“同振弱化”与“震后愈合”效应及其博弈作用机制,从物理力学机制上解释了“滑带在震动作用下为什么会失稳?”这一基础科学问题。基于上述科学发现,对沿用了半个世纪的滑坡动力学计算理论(Newmark法)进行了重要修正。
研究成果不仅提升了对强震诱发滑坡机理的科学认识,所提出的修正Newmark法更将对滑坡抗震设计产生深远的影响。相关研究成果发表于《Proceedings of the National Academy of Sciences of the Unitied States of
America》[1]。
[1] Metastable State Preceding Shear Zone Instability: Implications for
Earthquake-Accelerated Landslides and Dynamic Triggering