《苏州纳米所张珽团队EcoMat:基于分级纳米结构的高效、耐久的太阳能蒸发器》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-10-14
  • 洁净水源短缺困扰着超过世界四分之一的人口,也是引起传染病、贫穷等问题的根源。太阳能蒸汽发生器技术能在光照条件下直接产生洁净水源,为上述水源危机提供可靠的解决途径。近些年,研究人员通过提升太阳光吸收和光热转换效率、降低水的蒸发焓等手段,设计制造了一系列太阳能蒸发器以克服水蒸发过程中大量的能量消耗与弱的自然光输入之间的矛盾。然而,更高的能量利用效率依然需要在复杂的热管理与水的输运微妙平衡中去探寻。

    另一方面,盐水在快速蒸发过程中往往伴随着盐的结晶,这会显著限制蒸发器的光吸收效率降低净水效率。针对这一缺陷,表面疏水化与构建宏观水输运通道这两个策略被广泛应用于蒸发器设计以提升耐久性。但是,超疏水的表面无法消除盐结晶阻塞水输运通道的风险,同时较大尺寸的通道又会造成热的对流损失。同时具备高效净水能力和抗盐特性的太阳能蒸发器依然是充满挑战的课题。

    近日,中国科学院苏州纳米所张珽团队在前期基于功能化纳米通道的柔性水伏产电系统工作的基础上(Nat. Commun. 2022, 13:1043; Nano Energy. 2022, 99, 107356.),通过多次冻融方法成功构建了具有垂直微米通道和离子选择特性纳米通道分级结构的高效抗盐太阳能蒸发器。得益于表面修饰磺酸根和独特的分级微纳结构特性,伞状的蒸发器可以有效地减少热对流损失并降低水的蒸发焓。在一个标准太阳光条件下,蒸发器的净水速度和能量利用效率分别高达3.68 kg m-2 h-1和91.1%。更重要的是,通过水伏流动电势监测证明具有高表面电势的纳米通道内存在着交叠双电层,赋予纳米通道离子选择性。结合微米通道良好的水输运能力,蒸发器显示了出色的抗盐特性,可以在海水条件下长时间(>96 h)保持大于90%的工作效率。

    该工作协同利用通道尺寸效应和表面特性制备兼具高速净水能力和高抗盐能力的太阳能蒸发器,同时也为蒸发驱动的水伏产电器件提供了创新的构建思路和应用场景。上述成果近期以题为“A highly efficient and durable solar evaporator based on hierarchical ion-selective nanostructures”发表在EcoMat上(EcoMat. 2022,e12289.),中国科学院苏州纳米所李连辉博士后为论文第一作者,张珽研究员为通讯作者。相关工作得到了国家自然科学基金等项目的支持。

    原文链接:https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12289

  • 原文来源:http://www.sinano.cas.cn/news/kyjz/202210/t20221011_6522988.html
相关报告
  • 《苏州纳米所蔺洪振团队等ACS Energy Letter:调控光热蒸发膜孔隙边界层效应提升太阳能水蒸发效率》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-04-26
    •  太阳能驱动的界面水蒸发具有节能性、水处理成本低等诸多优点,基于光热材料的界面蒸发器通常依靠其自身特殊的多孔结构且比表面积大,能够与水体紧密接触,充分利用太阳能,使其成为研究热点。 此外,对界面蒸发器采用亲水涂层或位点修饰的光热材料,也能调控水的分子状态,提升水蒸气产生与效率。然而,就特定的光热材料和体系而言,水蒸气扩散速率严重受到光热材料中孔隙的变化的影响,分布不均及孔径不一的孔隙结构与蒸发水分子之间形成强大粘滞力,这严重阻碍太阳能蒸发器的效率。为了应对上述挑战,研究人员主要集中在构建与制备各种结构化多孔光热材料。然而,设计的孔结构是随机的,缺乏有力的理论指导。由于流体粘滞力的存在,流体会沿通道表面形成流速梯度,形成所谓的扩散边界层,产生边界层抑制效应,阻碍水蒸气扩散,降低蒸发效率。特别是,由于扭曲通道和不均匀孔径分布等因素引起的强大粘性力,随机交联孔隙中的边界层厚度显著增大。因此,亟需消除严重的边界层抑制效应是进一步提高太阳能蒸发器产水能力的有效途径及当前发展的迫切需求。    针对上述问题,中国科学院苏州纳米所蔺洪振团队联合江苏省农科院肖清波团队、成都大学陈瑜团队以及德国卡尔斯鲁厄理工学院电化学研究中心王健博士,从如何消除受限水蒸发边界层效应的角度,提出了低曲折度多孔蒸发器 (LTPE),以突破长期存在的蒸汽扩散限制。在该设计中,结合理论模拟,所构筑的多孔结构可以有效地消除长距离有序低曲折通道中的扩散边界层厚度,从而能够以低扩散阻力提高蒸发速率。因此,LTPE 的蒸汽扩散速度比传统材料快 260%,在 4.0 m s-1的流速及一个太阳光强度下,水分蒸发率达到创纪录的 16.8 Kg m-2 h-1。 此外,3D 结构径向互连通道还可以在任意太阳照射和对流下实现稳定快速的水蒸发,显著提升了室外废水处理能力。   相关工作以Improving Solar Vapor Generation by Eliminating the Boundary Layer Inhibition Effect of Evaporator Pores为题发表在ACS Energy Letter上。通讯作者为王健博士、陈瑜教授、蔺洪振研究员以及肖清波研究员。该工作得到了国家自然科学基金面上项目、江苏省自然科学基金、国家重点研发计划等项目资助。
  • 《苏州纳米所张珽团队PMS顶刊综述:电纺纤维柔性电子:纤维制备,器件平台,功能集成和应用》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-05-09
    •   在过去的二十年中,柔性电子产品因其独特性质在电子皮肤、人机界面、柔性显示、可穿戴设备、便携式能源装置和植入式器械等领域的众多潜在应用而备受关注。电纺纤维具有优异的力学性能和可调控的物理化学性能,在用于制造新兴的柔性电子产品方面展示出巨大的前景。本文全面回顾了基于静电纺丝的柔性电子(图1),包括电纺技术简介、电纺纤维多样性、电纺纤维电子器件集成策略和各种器件平台(包括电极、电阻、电容、压电/ 摩擦电、电化学和晶体管等类型)。这些基于电纺纤维的柔性电子器件可以集成多种传感模式、无线通信、自供电和热管理功能。得益于电纺纤维优异的柔韧性、坚固性、高孔隙率、多样化的纤维形态和组装形式、重量轻、制备成本低等众多优点,电纺纤维柔性电子产品在个人医疗保健和人体监测方面发挥着越来越重要的作用,可用于生物物理信号、生化信号和电生理信号检测,并可作为植入式器件促进细胞和组织再生。文章结尾,作者对现阶段工作进行了总结,并对电纺丝纤维的柔性电子领域的发展进行展望。   静电纺丝广泛用于制备具有非凡性能的超细纤维,其制备获得的纤维产品具有高表面积、高孔隙率、柔韧性和结构多样化等优点,广泛应用于组织工程、药物控释、水处理、光电器件、储能器件和柔性电子等众多领域,受到学术界和工业界的极大关注。自从2000年,发表的关于静电纺丝的文章已超过5万篇。于此同时,柔性电子产业迅速发展。在过去的二十年里,发表的关于柔性电子的论文已超过3万篇。特别是最近10年,电纺纤维柔性电子发展迅速,并且呈现持续迅速发展势态,在2022年,发表的关于电纺纤维柔性电子的研究占比柔性电子整个领域超过2.5%。然而,关于电纺纤维柔性电子的高水平综述文章依旧缺乏。为了填补该空缺,本文从电纺技术与电纺纤维制备、器件平台、功能集成和应用方面详细总结电纺纤维柔性电子的研究进展。   作者将电纺纤维柔性电子的发展分为四个阶段:在第一阶段(2000-2012年),研究人员主要专注于导电电纺纤维的制备和电学性能调控。2012年至2016年(第二阶段),纳米生物电子支架、纳米纤维加速度计、可拉伸晶体管、柔性太阳能电池等基于电纺纤维的新型柔性电子器件开始进入人们的视野,并因其优异的性能而受到越来越多的关注。通过前两个阶段的发展,电纺纤维柔性电子在第三阶段(2016-2020)在材料和器件原型方面取得了重大进展。在此阶段,科研人员探索了许多新颖的柔性电子设备,并在各种应用场景中对其性能进行了很好的检验,例如用作可穿戴电子设备或植入式电子器件。这些柔性器件包括超薄纳米纤维网柔性器件、全纤维电子器件、基于单纤维的人工突触、心脏电子贴片等。自2020年以来(第四阶段),基于电纺纤维的电子产品在发表的文献数量和设备性能方面都取得了爆炸性的进步,并且这种快速的进步仍在继续之中。   电纺纤维的成分具有多样性,可以通过聚合物、小分子、胶体和复合材料加工制备,使其物理和电学性能根据具体应用具有高度的可调节性。在柔性电子器件中,电纺纤维可用作不同组件成分,如导电元件、基底材料、增强成分,甚至是构建全纤维结构器件。此外,受益于电纺纤维的多样化结构(例如,多孔、空心、核-壳、多通道和纳米带)及其组成多样(例如,单纤维、纱线、对齐纤维、随机纤维、纤维垫和 3D 多孔结构), 电纺纤维使得柔性电子器件具有一系列特殊优势,包括柔韧性、透明性、导电性、透气性、自愈能力和耐洗性,赋予设备高性能和某些独特的功能。基于静电纺丝纤维的电子产品可以作为不同的平台,包括拉伸电极、电阻传感器、电容传感器、摩擦/压电传感器、晶体管、纳米发电机和植入式设备等,用于监测一系列人体活动、电生理信号、生物分子信号,实现随时随地获取个人健康信息。   文章共包含六个章节:第一章为背景介绍,第二章为静电纺丝技术和电纺纤维,第三章关于电纺纤维柔性电子平台,第四章关于电纺纤维柔性电子器件的功能集成,第五章关于电纺纤维柔性电子的应用场景,第六章为总结和展望。   在背景介绍中,作者介绍了电纺纤维柔性电子研究背景。随着科学技术的进步,电纺纤维柔性电子受到人们的关注迅速上升。经过近二十几年的发展,无论器件形式还是器件性能都获得了巨大的进步(图2)。电纺纤维的众多特性赋予了柔性电子独特的应用优势,使其可广泛应用于健康检测各个方面。   静电纺丝技术和电纺纤维章节中,作者介绍了静电纺丝技术发展简史、静电纺丝技术原理(图3)、不同静电纺丝方法、用于制备电纺纤维的材料、电纺纤维结构多样性和电纺纤维的规模化制备技术。其中,用于制备电纺纤维的材料种类多样,包括聚合物、小分子、胶体和复合材料。  电纺纤维柔性电子平台章节中,作者首先介绍了电纺纤维用作柔性电子平台具有多重优点,包括材料多样性、纤维形貌多样性、大比表面积、柔韧性、透气性等。接着,介绍了电纺纤维用于制备柔性电子的制备策略,可用作柔性电子的基底材料、增强成分、电活性成分,甚至用于制备全纤维结构器件。电纺纤维组装体具有结构多样性特点,柔性电子器件可基于其单纤维结构、纱线结构、二维纤维网络结构、三维纤维网络结构、纤维复合水凝胶,制备的柔性电子具有也具有结构多样性(图4),极大丰富了电子器件的结构类型,满足不同场景的应用需求,如拉力、压力、温度、湿度、气体和电化学传等。   电纺纤维柔性电子器件的功能集成章节中,作者介绍了电纺纤维柔性电子器件的功能集成,包括多模态(图5)、自供能、无限通讯功能、热管理、自清洁和生物相容性功能的传感装置和系统。上述功能的集成,有利于电纺纤维柔性电子更好地满足实际应用需求。   电纺纤维柔性电子具有众多应用场景,该章节中,作者重点介绍了用于人体生物物理信号、生物化学信号、生物电信号(图6)的检测和作为植入式生物电子用于促进细胞和组织再生。   在总结和展望中,作者表示,虽然电纺纤维柔性电子已经取得了巨大进展,但是仍旧面临诸多挑战,例如,直接制备高导电纤维、纤维器件的长期稳定性、功能集成和规模化制备等。解决上述问题,实现电纺纤维柔性电子器件服务于人们日常生活依然还有很长的路要走。   该综述论文以Electrospun Fiber-Based Flexible Electronics: Fiber Fabrication, Device Platform, Functionality Integration and Applications为题,发表在材料科学顶级期刊Progress in Materials Science上。中国科学院苏州纳米所张珽研究员为该综述通讯作者,高强博士后为该论文第一作者,共同作者还包括静电纺丝领域著名学者德国拜罗伊特大学的Seema Agarwal教授和Andreas Greiner教授。该研究得到了国家相关人才计划、国家自然科学基金面上项目和中国博士后科学基金面上项目(第72批)的资助。