《iGEM为改进生物安全相关政策提供经验》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2019-05-15
  • 国际基因工程机器设计大赛(iGEM)拥有专门的生物安全和生物安保计划。4月4日,Applied Biosafety:Journal of ABSA International期刊上发表的一篇文章,通过回顾该计划的具体内容和一系列具体实例,说明该计划实施的经验对改进相关政策的帮助,包括基因和生物来源的日益多样化、与技术发展保持同步、考虑未来环境释放的途径、解决抗生素耐药性,并测试当前生物安保计划的有效性。

    文章指出,iGEM的生物安全和生物安保计划是前瞻性的,因为它既解决了传统的(基于病原体的)风险,也解决了新技术和新威胁方面的新风险。它被整合到竞赛的技术工作中——明确描述了团体所有成员的角色和责任。它贯穿于项目的整个过程——从项目设计到未来的应用。它利用特定的工具收集和审查生物安全和生物安保信息,使规划及开展科学和工程的人更容易识别潜在风险并将其与适当的风险管理方法相匹配,且方便相关专家审查这些信息以确定差距并加强计划。整合日益适应的风险管理方法,使iGEM的生物安全和生物安保计划变得全面、综合,并涵盖了竞赛的整个过程。

相关报告
  • 《2020年iGEM大赛单项奖获奖项目概述》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2021-03-08
    • 2020年iGEM大赛单项奖获奖项目概述 国际基因工程机器大赛(International Genetically Engineered Machine competition,iGEM)是合成生物学领域的国际顶级大学生科技赛事,也是涉及数学、计算机、统计学等领域交叉合作的跨学科竞赛。iGEM由美国麻省理工学院于2003年创办,2005年发展成为国际赛事,于每年10月在麻省理工学院进行最终角逐。iGEM赛况和研究成果每年都受到《科学》、《自然》、《科学美国人》、《经济学人》等顶级学术杂志、英国广播公司这样的传统媒体的关注并进行专题报道,具有广泛的国际影响力。 2020年iGEM大赛吸引了来自全球30余个国家的256支队伍参赛,来自包括哈佛大学、麻省理工学院、斯坦福大学、哥本哈根大学、伦敦大学学院等在内的一批国际顶尖高校。中国地区有清华大学、北京大学、复旦大学、上海交通大学、南京大学等100支代表队参赛。在本次iGEM大赛中,共有168支参赛队伍获得金奖,45支参赛队伍获得银奖,26支参赛队伍获得铜奖。中国参赛团队共斩获60个金奖、14个银奖和7个铜奖。 为奖励参赛队伍研究创意的潜在应用创新,本次iGEM大赛共评选出10类单项奖,分别是最佳诊断类、环境类、食物与营养类、基础进步类、信息处理类、制造类、新应用类、开放类、软件类、治疗类项目奖。 (1)最佳诊断类项目奖 荷兰莱顿大学团队(研究生组)受当前COVID-19大流行的启发,开发了一种新的生物分子诊断技术,称为Rapidemic。该项目旨在设计一个独立于实验室的测试方法,能够对多种病原体进行精确快速的诊断测试。研究团队在这个工具包中整合了世卫组织快速诊断测试标准,包括经济实惠、灵敏、特异、用户友好、快速可靠、无需设备、可交付给最终用户(affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end-users,ASSURED)。该试剂盒的通用部分已经可以批量生产并在全球范围内提前分发,以应对下一次大流行,而试剂盒的靶点特异性部分可以根据病原体基因组序列迅速制备分发。(链接:https://2020.igem.org/Team:Leiden/Description) 美国罗切斯特大学团队(本科生组)制造了一种新的、无创的子宫内膜异位症(endometriosis)诊断方法。研究团队与子宫内膜异位症领域的专家医师和研究人员合作,创建了能够定性和定量测量月经流出物中子宫内膜异位症的生物标记物的测量方法。这种简单的子宫内膜异位症诊断方法,可用于各种临床环境,有助于解决知识差距和提高女性生殖保健意识。(链接:https://2020.igem.org/Team:Rochester/Description) (2)最佳环境类项目奖 双氯芬酸(Diclofenac)和其他药物过量使用会积聚在废水中,污染环境。目前的污水处理方法(如活性炭吸附和臭氧氧化等)既昂贵又复杂,小型污水处理厂很难使用。德国凯泽斯劳滕大学团队(研究生组)使用基因工程技术使污水处理过程经济且高效。该项目对绿藻莱茵衣藻(Chlamydomonas reinhardtii)进行基因改造,使其表达两种漆酶,促进双氯芬酸和其他污染物发生化学分解。漆酶是具有多铜中心的氧化酶,它们能够氧化底物的羟基,吸收一个电子并将其转化为氧气,理想的情况可以使微污染物失活并产生水等无害副产品。(链接:https://2020.igem.org/Team:TU_Kaiserslautern/Description) 由于水的重复使用,循环水产养殖系统(Recirculating Aquaculture System,RAS)中的鱼类的细菌、病毒和真菌感染问题突出。立陶宛维尔纽斯大学团队(本科生组)针对这个问题开发了三个产品,第一款是结合等温解旋酶依赖性扩增技术(isothermal helicase-dependent amplification,HDA)和横向流动分析方法(lateral flow assay,LFA)开发的黄杆菌检测试剂盒,具有经济实惠、坚固耐用和完全便携等优点,没有科学知识的农民也可以使用。第二款产品是一种新的外源性鱼类感染的治疗策略,有助于减少抗生素的使用。第三款产品是基于疫苗的预防系统,这是一种使用具有免疫原性的细菌外膜蛋白GldJ来创建的针对鱼类柱状病的亚单位疫苗,该疫苗被固定在海藻酸钙微球中。(链接:https://2020.igem.org/Team:Vilnius-Lithuania/Description) (3)最佳食物和营养类项目奖 荷兰代尔夫特理工大学团队(研究生组)设计了一种针对沙漠蝗虫的特殊而安全的生物杀虫剂PHOCUS。这种生物杀虫剂由一种针对蝗虫肠道内肠杆菌的工程噬菌体组成。工程噬菌体包含能够产生针对蝗虫的Cry7Ca1毒素DNA编码。研究团队通过数学模型分析了生物农药防治蝗虫的有效性,结果显示有毒分子表达有效而迅速。(链接:https://2020.igem.org/Team:TUDelft/Description) 草甘膦(glyphosate)长期被用作除草剂,现在茶叶食品中的农药残留问题十分突出。厦门大学团队(本科生组)致力于开发一款高效的草甘膦检测和降解系统。草甘膦被几种酶分解为AMPA,减少污染,过程中产生NADPH引起可测量的荧光信号。此外,研究团队还设计了两个由不同诱导因子控制的自杀开关。该项目为农药残留的检测和降解提供新的思路。(链接:https://2020.igem.org/Team:XMU-China/Description) (4)最佳基础进步类奖 德国亚琛工业大学团队(研究生组)研究的项目“M.A.R.S.”(Magnetic ATP Recycling System)建立了一种利用太阳能推动各种酶反应的创新方法。研究团队使用ATP再生方法创建底盘细胞,其中脂质体配备有细菌视紫红质和ATP合成酶,这些膜蛋白能够以ATP的形式将阳光的能量作为化学能储存起来。(链接:https://2020.igem.org/Team:Aachen/Description) 在开放系统中,转基因生物的无节制生长会对环境造成严重威胁。美国俄亥俄州立大学团队(本科生组)建立了易于使用的生物遏制系统数据库和支持数据,以期使生物遏制过程变得更加容易,使未来的研究人员可以轻松地查看、比较并最终选择最适合其项目的生物遏制系统。此外,研究者还设计了建模工具来帮助预测获取组成基因的属性和所得生物遏制系统将展现的生物特性。(链接:https://2020.igem.org/Team:OhioState/Description) (5)最佳信息处理类项目奖 日本早稻田大学团队的项目旨在促进普通群众对合成生物学的了解。研究团队选择易于调节的无细胞系统展示了数学建模、湿实验以及设计-构建-测试-学习(DBTL)循环,名为Zombie和Samurai的无细胞系统在单萜生产中都取得成功。该合成生物学建模过程被植入了智能手机应用程序中,用于对高中生进行展示。(链接:https://2020.igem.org/Team:Waseda/Project) (6)最佳制造类项目奖 丝状真菌既是蛋白质又是次级代谢产物的重要生产者,但由于它们的丝状结构难以使用,因此常常被忽视。丹麦技术大学团队通过优化黑曲霉(Aspergillus niger)的菌丝形态,帮助其在工业生产蛋白质和小分子方面的应用。研究者对黑曲霉形态学相关基因进行鉴定,还开发了新的信号肽来提高黑曲霉的蛋白质分泌。最后,研究团队开发了一个软件工具,用于预测丝状真菌的形态模式,并创造可以提高蛋白质分泌水平的合成信号肽。(链接:https://2020.igem.org/Team:DTU-Denmark/Description) (7)最佳新应用类项目奖 瑞典乌普萨拉大学团队(研究生组)致力于开发一种模块化的生物传感器,适用于检测特定小分子物质和蛋白质特定位点。NANOFLEX是一种适用于多种应用的细胞生物传感器系统。与许多细胞生物传感器不同,NANOFLEX是基于可互换纳米抗体的模块化检测域。为了优化其性能,研究团队对报告系统、降噪系统和信号放大系统进行了升级。为了使该系统适用于蛋白质靶点检测,研究者还研究了如何在模型生物的外膜上暴露检测域。(链接:https://2020.igem.org/Team:UofUppsala/Description) 模式识别受体(Pattern Recognition Receptors,PRR)构成植物固有的非自适应免疫系统的一部分,该系统以高亲和力和特异性识别保守的微生物表位(Microbe associated molecular patterns,MAMP)。瑞士苏黎世联邦理工学院团队(本科生组)开创性地将PRR以模块化的方式引入到合成生物学中,设计出基于PRR的水污染检测系统,比现有方法更加便宜、高效、简便和精确。该研究将促进了PRR在生物传感领域的未来发展。(链接:https://2020.igem.org/Team:UZurich/Description) (8)最佳开放类项目奖 吉林大学团队通过合成生物学方法,使用生物学模型来模拟游戏。在生物学模式中,细菌A和细菌B被设计为敌对关系,当细菌A周围的细菌B数量达到一定水平时,细菌A死亡。此外,研究团队通过控制毒素的表达量来实现原有的定量规则,并将光控制作为对细菌进化的人为干预引入了该项目。(链接:https://2020.igem.org/Team:Jilin_China/Description) (9)最佳软件类项目奖 加拿大康考迪亚大学团队开发了一个研发平台AstroBio,以促进太空中的实验研究和生物制造应用。AstroBio是一个精心策划的、开源的、用户友好的软件和数据库,用于汇编微重力引起的酵母、细菌和植物基因表达变化的文献研究结果。它允许用户搜索特定的基因、微生物、物种、微重力诱导的基因调节、开放阅读框架、微重力条件(太空飞行实验与模拟微重力实验)、分析类型(RNAseq与微阵列实验)。它还允许用户比较不同研究的结果,并确定与其他应激源(如热休克)相比,特定酿酒酵母基因表达的变化是否与微重力诱导的应激有关。(链接:https://2020.igem.org/Team:Concordia-Montreal/Description) (10)最佳治疗类项目奖 脊髓损伤(spinal cord injury,SCI)是一种严重的疾病,英国伦敦国王学院团队(研究生组)利用生物材料作为促进轴突再生的架桥结构。名为Renervate的项目第一阶段是基于3D生物打印的聚己内酯(PCL)的支架设计和建模,该支架覆盖有包含Pvfp-5β和贻贝粘蛋白的生物粘附涂层。第二阶段是湿实验验证以及支架和蛋白聚合物的形成。研究团队通过合理的蛋白质设计开发了一种新颖的、促进脊柱轴突再生的合成融合蛋白。此外,研究团队还设计了一种可生物降解且具有生物相容性的支架,该支架已被证明能够承受脊柱的机械力,并已对其降解速率进行了建模,以确保其在脊柱中的停留时间足够长。(链接:https://2020.igem.org/Team:KCL_UK/Description) 美国威廉与玛丽学院(本科生组)设计了一种具有广谱抗病毒功能的“智能”鼻益生菌TheraPUFA。与流行的RNA疗法不同,TheraPUFA利用多不饱和脂肪酸(PUFA)来抵抗感染,TheraPUFA开创性地提供一种在细菌细胞内合成后输出PUFAS的方法。TheraPUFA的智能体现在可以感知并抑制在SARS-CoV-2和类似病毒感染期间可能发生的过度炎症。此外,鼻咽是SARS-CoV-2早期感染的主要部位,TheraPUFA作为鼻益生菌,可以保护具有高表达ACE-2受体的脆弱细胞,并在预防性给药时防止感染扩散到肺部。为了验证TheraPUFA可行性,研究者构建了一个复杂模型来模拟益生菌对病毒载量和细胞因子浓度的影响,结果显示该益生菌模型效果超越了现有的益生菌模型。(链接:https://2020.igem.org/Team:William_and_Mary/Description) 孙裕彤 吴晓燕 编译整理 原文链接:https://2020.igem.org/Competition/Results
  • 《非洲生物安全管理者呼吁重视生物安全宣传工作》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:田儒雅
    • 发布时间:2017-11-28
    • 2017年7月18日至20日,2017年农业生物技术和生物安全宣传研讨会(Agri-biotechnology and Biosafety Communication,ABBC)在乌干达恩德培市(Entebbe)召开。ABBC研讨会是为农业生物科技和生物安全宣传工作分享经验的平台,第一届会议于2015年4月在肯尼亚内罗毕召开。2017年的会议以加强生物安全知识宣传、改善生物安全管理为主题,旨在为参会者分享非洲生物安全宣传的经验提供机会。 120多名来自非洲及其他地区的代表出席了会议,包括非洲生物安全部门的领导人及宣传人员、政府官员、科学家和科学知识宣传人员,以及部分非洲生物安全部门的CEO、代言人、生物安全宣传人员、生物安全专家和专业宣传人员。此次会议为各方提供了交流机会,探讨如何宣传生物安全以及非洲各国关于生物安全管理的最新实践。会上,许多国家的管理者指出,在管理转基因生物时,若要获得民众信任,宣传生物安全知识至关重要。 非洲生物安全管理者们纷纷呼吁重视生物安全宣传工作。生物安全系统项目主任(Program for Biosafety Systems)朱迪·钱伯斯博士(Judy Chambers)回顾了生物安全宣传工作的历史,也展望了未来。她强调,对于生物安全宣传中非科学类的边缘问题,必须注重策略的使用,合理引导价值观,分享最佳实践,提高宣传效率;而对于新育种技术等新情况,也必须借鉴经验加以处理。她呼吁宣传者将性别差异纳入考虑范畴,在宣传知识、寻求政策支持时,关注女性的安全、健康、营养、经济状况及社会福利。 马来西亚生物技术信息中心(Malaysian Biotechnology Information Centre)执行主任马海丽楚米·阿如加南(Mahaletchumy Arujanan)博士做了主题发言,探讨了如何在生物技术与生物安全宣传之间取得平衡。他强调,科学家和宣传人员除了传播生物安全知识,还应该介绍技术本身,说明科技产品为人们带来的益处。 南非生物安全局(Biosafety South Africa)执行经理汉尼·格林纳瓦德博士(Hennie Groenewald)指出,由于宣传工作不佳,整个非洲大陆对农业生物技术和生物安全缺乏了解,这种情况迟迟未能改变。非洲生物安全专业知识网络(ABNE)地区办公室主任杰里米·拉奥果(Jeremy Ouedraogo)博士指出,非盟国家首脑已经认同,现代生物技术是提升作物产量的重要工具之一。他也与美国密歇根州立大学(Michigan State University,MSU)、国际农业生物技术应用服务组织(ISAAA)等机构合作,成立了非洲生物安全宣传者网络(African Network of Biosafety Communicators),宣传生物安全。 (编译 田儒雅)