《美国天体物理联合实验室(JILA)的科研团队研发的新型传感器可以检测任何气体中的具体成份》

  • 编译者: 张宇
  • 发布时间:2025-04-29
  • 专业的品酒师通过闻一闻葡萄酒,就能告诉你,你葡萄酒中的具体成份到底是黑皮诺还是赤霞珠。

    近日,科罗拉多大学博尔德分校和美国国家标准与技术研究院(NIST)的联合研究机构(JILA)的科学家也实现了类似成份辨别的壮举,只是他们研发的新型传感器对气体成份的辨别能力要强得多。

    该团队开发了一种新型激光装置,能够检测任何气体样本并识别其中的大量分子种类。其灵敏度足以检测到低至万亿分之一浓度的分子。此外,该装置的设计足够简单,研究人员可以在多种环境中快速且低成本地使用该方法,从诊断人类患者的疾病到追踪工厂的温室气体排放。

    JILA的研究团队已于2025年2月19日将这种新型传感器的详细信息发表在《Nature》期刊上中。

    “即使在今天,我仍然觉得难以置信,最强大的传感工具竟然可以用如此简单的方式构建,仅使用成熟的技术组件,但通过利用的巧妙算法赋予它们更强大的功能,”该研究的主要作者、JILA博士生梁启忠说。

    为了展示该工具的能力,Liang和他的同事们深入探讨了医学中的一个重要问题:你呼出的空气中有什么?

    研究人员分析了真实人类受试者的呼吸样本,并展示了他们可以识别人们口腔中细菌的种类。该技术有朝一日或许可以帮助医生诊断肺癌、糖尿病、慢性阻塞性肺病(COPD)等更多疾病。

    该研究的资深作者、物理学家Jun Ye 表示,这项新研究是在科罗拉多大学博尔德分校和美国国家标准与技术研究院近三十年的量子物理研究基础上进行的,尤其是围绕一种被称为频率梳激光器的专用设备展开的研究。

    “频率梳激光器最初是为光学原子钟发明的,但很早以前,我们就发现了它在分子传感方面的强大应用潜力,”JILA 和 NIST 的研究员、科罗拉多大学博尔德分校物理学副教授叶军说。“尽管如此,我们还是花了 20 年时间才使这项技术成熟起来,最终使分子传感具有普遍适用性。”

    要理解该团队的技术是如何运作的并不难,事实上所有气体,包括从纯二氧化碳到你吃大蒜后呼出的难闻气体,都带有各种特殊的“指纹信息”。

    如果使用跨越多个“光学频率”或颜色的激光器探测这些气体,则气体样品中的分子将以不同的频率吸收这些光。这几乎就像一个窃贼在犯罪现场留下指纹。例如,在之前的一项研究中,Liang和他的同事使用这种激光吸收检测原理来筛选人类呼出的气体样本中是否存在SARS-CoV-2感染的迹象。

    频率梳非常适合这种技术,因为与传统激光器不同,它们会同时发射数千到数百万种颜色的光脉冲。(JILA的Jan Hall开创了这些激光器,并因其工作于2005年获得诺贝尔物理学奖)。

    但要检测低浓度的分子,这些激光必须穿过数英里或更远距离的气体样本,以便分子能够吸收足够的光。

    为了使这种技术具有实用性,科学家们必须在尺寸仅为数英尺的气体容器内实现这样的距离。

    “我们用一对高反射率镜子包围气体样品,形成一个'光学腔',” Liang说。“梳状光现在可以在这些镜子之间反射数千次,从而有效地增加其与分子的吸收路径长度。”

    或许这就是目标。在实践中,光学腔很难操作,如果激光与腔体的谐振模式不匹配,激光束就会被弹出。因此,科学家们以前只能在一次性测试中使用窄范围的频率梳光,并且只能检测到窄范围的分子。

    在这项新研究中,Liang和他的同事们克服了这一长期存在的挑战。他们提出了一种新技术,并将其命名为调制环形衰减频率梳干涉测量法(Modulated Ringdown Comb Interferometry,简称MRCI,读音为“mercy”)。该团队并没有保持其光学腔的稳定,而是定期改变其大小。反过来,这种晃动使腔体能够接受更宽范围的光谱。然后,该团队利用巧妙的算法成功破解出从腔体中出现的复杂激光强度模型,以确定样品的化学成分。

    “我们现在可以使用反射率更高的镜子,并引入光谱覆盖范围更广的频率梳光,”Liang说。“但这仅仅是个开始。使用MRCI我们将可以实现更好的传感性能。

    该团队现在正在将其新的气体嗅探器用于人类呼出的气体样本的检测。

    “人类呼出的气体样本是最具挑战性的气体样本之一,但确定其分子组成对于其在医学诊断方面的巨大潜力至关重要,”该研究的合著者、叶军实验室的博士生Apoorva Bisht说。

    Bisht、Liang和叶军现在正在与科罗拉多大学安舒茨医学园区和科罗拉多儿童医院的研究人员合作,使用MRCI分析一系列呼出气体样本。他们正在研究MRCI是否可以区分出肺炎儿童和哮喘儿童呼出气体样本的不同。同时,该团队还在分析肺癌患者在肿瘤切除手术前后的呼出气体样本的区别,并正在探索该技术是否可以用于慢性阻塞性肺病(COPD)患者的早期诊断。

    “在现实世界真实的受试者案例中验证我们的方法将具有极其重要的意义,”叶军说。“通过与科罗拉多大学安舒茨分校的医学同行密切合作,我们致力于充分发挥这项技术在医学诊断方面的全部潜力。”

相关报告
  • 《美国天体物理联合实验室(JILA)研究团队使用新型量子导航设备来测量三维加速度》

    • 编译者:张宇
    • 发布时间:2025-07-27
    • 美国天体物理联合实验室(JILA)是科罗拉多大学博尔德分校和美国国家标准与技术研究院(NIST)共同创建的的联合研究机构。在近日一项新的研究中,JILA和科罗拉多大学博尔德分校的物理学家使用一团冷却到极低温度的原子云来同时测量三个维度上的加速度——许多科学家认为这一操作是不可能实现的。 该设备是一种新型的原子“干涉仪”,有朝一日可以帮助人们更精确地导航潜艇、宇宙飞船、汽车以及其他交通工具。 “传统的原子干涉仪只能测量单个维度的加速度,但我们生活在一个三维世界中,”科罗拉多大学博尔德分校物理系研究生、该研究的共同作者Kendall Mehling说。“要知道我将去往何处,以及我曾去过哪里,就需要在所有三个维度上同时跟踪我的加速度。” 研究人员本月在《科学进展》(Science Advances)杂志上发表了题为“光晶格中的矢量原子加速度测量”的论文。该团队包括Mehling;物理学博士后研究员Catie LeDesma;以及物理学教授兼JILA研究员Murray Holland。 2023年,美国国家航空航天局(NASA)通过该机构的量子路径研究所向科罗拉多大学博尔德分校的研究人员提供了550万美元的拨款,以继续开发这种传感器技术。 这种新型设备是工程学的一大奇迹:Holland和他的同事们利用六束像头发丝一样细的激光,将数万个铷原子组成的云固定在原位。然后,在人工智能的帮助下,他们以极其复杂的方式操纵这些激光,这使得研究团队能够测量原子在受到微小加速度(例如汽车踩油门时)时的变化。 如今,大多数车辆通过全球定位系统(GPS)和被称之为加速度计的传统或“经典”电子设备来跟踪加速度。该团队研发的新型量子设备要想与这些现有的测量工具竞争显然还有很长的路要走。但研究人员看到了这种基于原子的导航技术的巨大前景。 “如果你将一个经典传感器在不同的环境中放置多年,它会发生故障和老化,”Mehling表示。“再比如你钟表里的发条会随着使用时间变长而发生扭曲和变形。但是这一切在原子身上都不会发生。” 干涉仪在历史上以各种形式存在了几个世纪,它们被用于从通过光纤传输信息到寻找引力波(即宇宙结构中的涟漪)等各种用途。 其基本原理是将事物分开后再重新组合在一起,这与拉开拉链然后再拉上拉链的过程类似。 例如,在激光干涉测量法中,科学家首先照射一束激光,然后将其分成两个相同的光束,分别沿着两条不同的路径传播。最终,他们将光束再重新合并在一起。如果激光在其传播过程中受到了不同的影响,例如受到不同的引力作用,那么它们在重新组合时可能无法完美地匹配。换句话说,拉链可能会卡住。研究人员可以根据这两束原本相同的光束现在如何相互干涉的情况来进行测量,这也是其名称的由来。 在最新的研究中,该团队实现了同样的壮举,但使用的不是光而是原子。 它的工作原理是这样的:该设备目前的大小与气垫冰球桌相当,可以放在一个台面上。首先,研究人员将一组铷原子冷却到仅比绝对零度高几亿分之一度的温度。 在如此寒冷的环境中,原子形成了一种神秘的量子态物质,称为玻色-爱因斯坦凝聚态(BEC)。2001年,时任科罗拉多大学博尔德分校的物理学家Carl Wieman和JILA的Eric Cornell因首次创造出BEC而获得诺贝尔奖。 接下来,该团队利用激光来使原子振动,从而将它们分开。在这种情况下,这并不意味着原子群正在分离。相反,每个单独的原子都处于一种被称为叠加态的幽灵般的量子态中,在这种状态中,它可以同时出现在两个地方。 当原子分裂和分离时,这些“幽灵”会沿着两条不同的路径彼此远离。(在当前的实验中,研究人员并没有真正移动设备本身,而是利用激光推动原子,使其产生加速度)。 “我们的玻色-爱因斯坦凝聚态是一个由原子构成的物质波池塘,我们向池塘中投入由小光包组成的‘石头’,从而向左和右发送涟漪,”Holland说。“当涟漪扩散开来后,我们将它们反射回来,并在它们受到干扰的地方将它们重新聚集在一起。” 当原子重新聚在一起时,它们会形成一个独特的图案,就像两束激光飞驰着聚合在一起,但实际上更加复杂。结果类似于玻璃上的指纹。 “我们可以解码该‘指纹’并据此模拟出原子所经历的整个加速度过程,”Holland表示。 该小组花了将近三年的时间构建该设备以实现这一壮举。 本身而言,目前的实验设备非常紧凑。尽管我们使用18束激光穿过包含原子云的真空系统,但整个实验装置足够小,有一天我们甚至可以实现便携式野外部署,“LeDesma说。 成功的秘诀之一要归功于一种被称为机器学习的人工智能技术。Holland解释说,分裂并重新组合铷原子的过程需要通过很多复杂的步骤来调整激光器。为了简化这一流程,该团队训练了一个可以提前规划这些操作步骤的计算机程序。 到目前为止,该设备只能测量比地球引力小几千倍的加速度。而现在市面上主流的技术可以做得更好。 但该团队仍在不断地改进其工程设计,并希望在未来几年内将其量子设备的性能提高数倍。尽管目前的成绩不尽人意,但这项技术还是证明了原子研发路径的可能性。 “我们并不完全确定这项研究的所有可能影响,因为它打开了一扇新领域的大门,”Holland表示。
  • 《美国天体物理联合实验室(JILA)等机构研究人员利用纠缠物质波,克服了标准量子极限(SQL)》

    • 编译者:李晓萌
    • 发布时间:2024-11-11
    • 今天的传感技术,从原子钟到引力波探测器,在很大程度上依赖于精度,但从根本上受到标准量子极限(SQL)的限制。长期以来,这种对测量精度的限制一直是需要超精确检测的科学领域的障碍。在近日发表在《Physical Review A》上的一项研究中(https://doi.org/10.1103/PhysRevA.110.L041301),来自美国国家标准与技术研究院(NIST)和科罗拉多大学博尔德分校的联合机构美国天体物理联合实验室(JILA)、NIST和科罗拉多大学量子物质理论中心的研究人员展示了一种使用纠缠物质波绕过这一障碍的新方法。通过仅操纵超冷原子的运动状态,而不是电子相互作用,该团队创建了一个高度可调的系统,可以产生纠缠,适用于更敏感的量子增强传感器。 通过动量态重新定义纠缠 纠缠是一种量子现象,其中粒子相互连接,这意味着即使相隔很远,一个粒子的状态也会瞬间影响另一个粒子。在量子传感中,纠缠对于超越测量精度的经典极限(称为标准量子极限(SQL))是必要的。这个限制限制了许多量子实验中可实现的精度。通过纠缠,科学家们希望减少测量中的不确定性,这可能会导致更精确的原子钟、引力波探测器和其他量子技术。 正如该研究所指出的那样,之前的研究通常依赖于纠缠原子的内部状态,例如它们的自旋或电子构型。然而,研究中详细介绍的这种新方法表明,原子动量态之间可以产生纠缠,为量子增强传感创造了一个完全不同的范式。 使用超冷原子腔系统,研究人员依靠腔内的原子运动如何导致腔光子的频率偏移。然后,这种转变以偶极力的形式反射回原子上,使它们相互作用。动量态之间的这些相互作用产生了一种可用于量子测量的纠缠形式,所有这些都不涉及电子相互作用。 调整原子运动以实现精确控制 在他们的实验装置中,原子被限制在光学腔中,该光学腔由相干驱动器泵浦,以特定速率注入光子。当原子在腔内移动时,它们与光子的相互作用会导致频率偏移,进而驱动腔的响应。这种动态在原子的动量态之间产生纠缠,使团队能够精确控制原子的集体运动。该系统具有高度可调性,这意味着研究人员可以调整各种参数来优化纠缠生成过程。 根据该团队的说法,这项实验的关键成就之一是演示了单轴扭转(OAT)动力学,这是一种压缩形式,可以降低一个测量方向的不确定性,同时增加另一个方向的不确定度。这种设置中的OAT动力学是由原子动量态之间的相互作用引起的,产生了一种集体运动,导致了计量上有用的纠缠。这意味着即使在存在噪声的情况下,该系统也可以实现SQL之外的精确测量。 SQL之外的传感技术转型 量子增强传感在广泛的领域具有潜在的应用,从基础物理实验到GPS和医学诊断等实用技术。研究指出,通过超越SQL,这项研究可能会带来更灵敏的探测器,能够以前所未有的精度测量引力场、磁场或其他物理性质的微小变化。 例如,在引力波探测中,必须测量时空中令人难以置信的微小变化,使用纠缠物质波可以实现更精确、更快的探测。同样,在依赖于基于原子振动的精确时间测量的原子钟中,降低测量不确定性可以显著提高其精度,从而带来更好的全球定位系统和电信技术。 一如既往,噪音是不可避免的 正如该团队所指出的那样,虽然这项研究对量子传感产生了影响,但在这种系统得到广泛部署之前,仍有一些挑战需要克服。主要限制之一是目前实验中使用的系统的大小。在这项研究中,研究人员使用了相对较少的原子和动量态。将这种方法扩展到更大的系统是必要的,以充分实现其在实际应用中的潜力。 此外,该系统仍然容易受到噪声和退相干的影响,这两者都会降低纠缠度并降低传感协议的有效性。未来的工作将需要专注于最大限度地减少这些影响,可能是通过改进纠错技术和更好地控制原子和光子相互作用。 纠缠物质波的精度未来 科罗拉多大学的团队所进行的研究可能为利用纠缠物质波进行量子增强传感提供新的可能性。通过超越依赖电子相互作用的传统方法,他们展示了一种可以提高各个领域测量精度的方法,特别是在更强大的量子传感器方面,其潜在应用范围从更精确的原子钟到更好的引力波探测器。随着量子传感领域的发展,控制和使用纠缠物质波的能力可能成为一个新的标准。 参与本研究的作者包括John Drew Wilson, Jarrod T. Reilly, Haoqing Zhang, Chengyi Luo, Anjun Chu, James K. Thompson, Ana Maria Rey, and Murray J. Holland。