《一种溶解法,纳米结构,导电石墨烯/聚苯胺混合涂料用于金属腐蚀保护和监测》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2017-11-16
  • 采用自顶向下的溶液处理技术开发了一种智能、有效的防蚀涂层,由交替石墨烯和聚苯胺(PANI)层组成。用聚苯胺辅以聚苯胺来制备纳米结构、导电石墨烯/聚苯胺混合(GPn),在一个实验室规模的过程中大量使用(> 0.5 L,6 wt %溶液)。该GPn被镀上铜,在1米硫酸和3.5 wt %氯化钠溶液中分别被选为化学和海水模型,表现出优异的耐腐蚀效率,分别为46.6%和68.4%。在两种腐蚀性溶液中进行阻抗测量,随着时间的变化,电荷转移电阻(Rct)的变化表明GPn是一种有效的物理和化学屏障,防止腐蚀物种到达铜表面。由许多镀有panil涂层的石墨烯平面组成的镀铜铜层,平行于铜表面。PANI展示了基于氧化还原的电导率,石墨烯的高电导率促进了电导率的提高。此外,GPn表面被发现是疏水的。这些性能可以有效地保护铜金属免受腐蚀。我们期望GPn可以进一步应用于开发能够监测金属状态的智能防腐涂层。

    ——文章发布于2017年11月09日

相关报告
  • 《一种溶解法,纳米结构,导电石墨烯/聚苯胺混合涂料用于金属腐蚀保护和监测》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-11-16
    • 采用自顶向下的溶液处理技术开发了一种智能、有效的防蚀涂层,由交替石墨烯和聚苯胺(PANI)层组成。用聚苯胺辅以聚苯胺来制备纳米结构、导电石墨烯/聚苯胺混合(GPn),在一个实验室规模的过程中大量使用(> 0.5 L,6 wt %溶液)。该GPn被镀上铜,在1米硫酸和3.5 wt %氯化钠溶液中分别被选为化学和海水模型,表现出优异的耐腐蚀效率,分别为46.6%和68.4%。在两种腐蚀性溶液中进行阻抗测量,随着时间的变化,电荷转移电阻(Rct)的变化表明GPn是一种有效的物理和化学屏障,防止腐蚀物种到达铜表面。由许多镀有panil涂层的石墨烯平面组成的镀铜铜层,平行于铜表面。PANI展示了基于氧化还原的电导率,石墨烯的高电导率促进了电导率的提高。此外,GPn表面被发现是疏水的。这些性能可以有效地保护铜金属免受腐蚀。我们期望GPn可以进一步应用于开发能够监测金属状态的智能防腐涂层。                                                                                                           ——文章发布于2017年11月09日
  • 《石墨烯注入碳基纳米材料用于耐用电池》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-07-02
    • 布朗大学的一个研究小组发现了一种方法,可以将用于制造固态锂离子电池的陶瓷材料的韧性提高一倍。《Matter》杂志描述的这一策略可能有助于将固态电池推向大众市场。 “人们对用陶瓷材料取代现有电池中的电解液非常感兴趣,因为它们更安全,而且能提供更高的能量密度,”布朗工程学院的博士后研究员、这项研究的第一作者Christos Athanasiou说。到目前为止,对固体电解质的研究主要集中在优化它们的化学性质上。在这项工作中,我们将重点放在机械性能上,希望能使它们更安全、更实用、更广泛地使用。” 电解液是电池正极和负极之间的屏障,锂离子在充电或放电时通过电解液流动。液态电解质工作得很好——它们被发现存在于今天使用的大多数电池中——但它们有一些问题。在大电流下,电解液内部会形成微小的锂金属丝,从而导致电池短路。由于液体电解质也是高度易燃的,这些短裤可能导致火灾。 固体陶瓷电解质是不易燃的,有证据表明它们可以防止锂丝的形成,而锂丝可以使电池在更高的电流下工作。然而,陶瓷是高脆性材料,在制造和使用过程中可能会断裂。 在这项新研究中,研究人员想知道,在陶瓷中注入石墨烯——一种超强碳基纳米材料——能否提高材料的断裂韧性(一种材料承受开裂而不崩解的能力),同时保持电解质功能所需的电子特性。 阿萨纳苏与布朗大学工程学教授布莱恩·谢尔登和尼廷·帕杜尔合作,他们多年来一直在使用纳米材料来加固用于航空航天工业的陶瓷。在这项工作中,研究人员制造了氧化石墨烯的微小血小板,将其与一种叫做LATP的陶瓷粉末混合,然后将混合物加热以形成一种陶瓷-石墨烯复合材料。 对复合材料的力学测试表明,与单独使用陶瓷相比,复合材料的韧性增加了两倍以上。“发生的情况是,当材料开始开裂时,石墨烯血小板将破裂的表面粘合在一起,因此需要更多的能量来维持裂纹的运行,”Athanasiou说。 实验还表明,石墨烯不会影响材料的电学性能。关键是要确保在陶瓷中加入适量的石墨烯。而石墨烯过少则无法达到增韧效果。过多会导致材料导电,这在电解质中是不需要的。 “你希望电解质能传导离子,而不是电,”帕图尔说。“石墨烯是一种良好的导电体,因此人们可能会认为在电解液中加入导体是在搬起石头砸自己的脚。”但如果我们将浓度保持在足够低的水平,就可以阻止石墨烯导电,同时我们仍能获得结构上的好处。” 综合来看,这些结果表明,纳米复合材料可以提供一条道路,使力学性能更安全的固体电解质用于日常应用。该小组计划继续改进这种材料,尝试石墨烯以外的纳米材料和不同类型的陶瓷电解质。 “据我们所知,这是迄今为止所制造的最坚硬的固态电解质,”Sheldon说。“我认为,我们所展示的是,在电池应用中使用这些复合材料有很大的前景。”