《日本开放线上数字土壤图》

  • 来源专题:农业科技前沿与政策咨询快报
  • 编译者: 李晓曼
  • 发布时间:2017-11-28
  • 2010年4月,日本国家农业环境科学研究院(National Institute for Agro-environmental Sciences, NIAES)开发了日本综合土壤分类系统。此后,网站的访问次数超过250万人次,表明该系统在土壤管理和环境研究的各个方面得到了广泛应用。近期,NIAES开发了一个比例尺为1:200,000的新型网络数字土壤地图,为促进多用途使用,这张地图覆盖了日本的所有土地,可以显示全国农业和非农业土地的分类和分布情况。此外,主要用于农田的农业土地土壤地图已经得到改善,其比例尺被扩大到了1:50,000。现在,这两幅土地图都可以在日本土壤分类系统(Soil Classification System of Japan)的网站上查看使用。

    用户可在各种地理信息系统中编码,从网站中下载的全国数字土壤图和新的农业用地土壤图的标准文件格式版本,并将其作为开放数据(CC BY4.0)免费分发给二级用户。除了用于农产品的肥料管理和水资源管理等农业用途外,这两张土壤地图还有望在全国范围内推动有效环境管理措施的开发,例如对不同土壤类型化学物质的进行动态管理等。

    (编译 李晓曼)

相关报告
  • 《变化的气候改变土壤》

    • 来源专题:农业立体污染防治
    • 编译者:罗婷婷
    • 发布时间:2017-01-20
    • 气候变化以激烈和不可预测的方式影响着世界的生活。这种不可预测性也延伸到更微妙但仍很重要的方面:气候变化的影响效应。例如,气候变化如何影响土壤,如何影响农场或健康的自然生态系统的支持性生产力,这些都是不确定的。 在一项新的研究中,研究人员利用数字技术来预测一个重要的土壤特征--土壤有机碳,怎样受到气候变化影响而改变。这项研究的主要作者乔纳森.格雷(Jonathan Gray)认为土壤有机碳是土壤健康的主要决定因素,它影响了土壤的许多化学、物理和生物学特性,如肥力和持水力。 研究人员使用12种气候变化模型来预测土壤有机碳水平如何随气候变化而变化。在研究中使用的模型反映了全方位的全球气候预测结果。模型也适用于澳大利亚东南部新南威尔士的具体研究区。结果是多种多样的,大多数模型显示随着气候变化,土壤有机碳减少了。但一些模型实际的预测是增长。为什么会有不同的预测?格雷将它归因于气候变化模型的内部不确定性。他认为在可以自信地预测土壤有机碳水平如何表现之前,更需要气候变化预测一致性。 研究人员还发现,土壤有机碳的变化在一定范围内,土壤有机碳随不同的土壤类型、当前气候和土地利用制度的变化而变化。例如,预测干旱条件种植制度下,沙质、低肥力土壤土壤有机碳的平均降幅小于每公顷1吨,这是湿润条件原生植被制度下,富粘性、肥沃的土壤15倍。预测土壤有机碳的变化是至关重要的,将使人们能够更好地准备和适应土壤条件的改变,将最终改善人们管理农业和本地生态系统的方法。 格雷和他的同事结合不同的数字方法来实现非常高的分辨率制图。而不是典型的10公里分辨率,他们团队取得了分辨率为100米。这使得研究人员将土壤有机碳的变化与特定的土壤类型或土地利用方式联系起来。 现在研究团队正试图预测其他受到气候变化的影响的关键土壤性质,如养分和酸度。研究人员认为理解气候变化如何影响土壤性质,实际上可能会产生更准确的气候变化模型。能够预测土壤储存碳或释放碳到大气中的潜力,将是未来气候变化建模和减灾战略的关键。
  • 《Science:拯救“濒危”土壤》

    • 来源专题:农业立体污染防治
    • 编译者:金慧敏
    • 发布时间:2015-04-10
    •         泥土消失蕴含着潜在的重大影响。健康多样性的土壤不仅对食物生产十分重要,它们还维持着物种和生态系统多样性,并对恢复遭到破坏的土壤景观也有帮助。         不久前,很少有研究人员能大声说出:泥土“灭绝”了。但在近几年,甄别世界稀有和濒危土壤的工作发展加快。在越来越强大的地理信息系统和地球观察传感器的帮助下,研究人员开始绘制“土壤多样性”地图,标示不同土壤的分布规律和范围。例如,刚刚过去的这个夏天,我国研究人员发布了中国第一个土壤多样性调查,识别出90种濒临灭绝的稀有土壤。类似的调查也显示,独一无二的泥土在美国、欧洲和俄罗斯同样面临绝迹。         研究人员表示,泥土消失蕴含着潜在的重大影响。健康多样性的土壤不仅对食物生产十分重要,它们还维持着物种和生态系统多样性,并对恢复遭到破坏的土壤景观也有帮助。“我们把逝者埋葬在这里、在上面行走,但也很容易遗忘它。为何不像保护植物和动物那样保护土壤呢?”威斯康星大学土壤学家James Bockheim说。Bockheim与同事合作编写了该主题的首个重要学术书籍《土壤多样性》。         计算土壤多样性成为一项复杂工作。跟生物学家测量生物多样性一样,土壤学家面临概念和技术困境,例如何时合并和分离土壤“种类”。土壤术语也十分混乱。对于同一种土壤而言,不同国家通常使用不同的名称,也有国家利用同一名称,称呼不同的土壤。         即便这样,土壤研究者仍开始揭示濒危稀有土壤的量级。2003年,加州大学伯克利分校的Ronald Amundson及其同事发表了两篇里程碑式的文章记录了美国的土壤多样性。在分析了1.3万土系的分布信息官方数据后,该研究小组识别出4500多种“稀有”土壤,这些土壤的覆盖面积不到1000公顷,通常是独一无二的地质和生态历史的产物。 他们还发现了508种“濒临灭绝”的土壤,另外31种土壤在已经“灭绝”。在6个过度农耕的中西部州,每个州有超过一半的已知土壤面临风险。         保护行动         在Amundson研究小组采取国家视角的同时,其他美国研究人员则聚焦于更小的区域,部分研究针对稀有土壤如何与珍贵植物系统和生态系统相匹配。去年,Bockheim和丹佛大都会州立大学的Sarah Schliemann近距离观察了一个生态过渡区,这里是南部草原和北部森林的交汇地。         尽管这个过渡区仅占威斯康星州面积的13%,但它拥有该州40%的独有地方性土壤。这种土壤可能产生于该地区历史上强烈的冰川作用和气候因素的影响。但研究人员发现,稀有土壤与约100种当地植物间的关联并不大,这些植物受到地形的影响比土壤类型的影响更大。         该研究还揭示,159种当地土壤中有一半覆盖的区域相对较小,少于4900公顷。Bockheim表示,这使得它们面临因农耕或修路带来的更高的流失风险,“我不知道人们还能否复原它们”。         其他国家也致力于识别稀有土壤。2009年,俄罗斯土壤科学家发表了《俄罗斯土壤红皮书》。中国科学家也发布了中国土壤多样性新研究。联合作者、加州大学伯克利分校的Peng Gong表示,目标之一是检测大规模土地使用变化,包括快速城市化和退耕,是如何影响中国土壤的。         要完成调查工作需要大量实地勘探,研究人员从地区机构进行的8900项土地调查中精选了数百个。Gong表示,最终结果相对粗略,一些地区的信息很少甚至没有,但仍得出了一些结论。中国的研究还迈出了新一步,分析了多少受威胁土壤已经得到的一些保护,例如位于公园内。         另外,土壤储备可能还有很长的路要走,但一些国家已经开始采取试验性措施。在俄罗斯,土壤学家在2001年帮助说服政府采取一项土壤保护措施,但后续行动仍受限制。最近,英国环保机构发布了土壤多样性正式指导方针。但农业组织通常对这些可能限制农业的措施表示抵制。在欧盟,研究人员致力于推动政府将土壤多样性正式与保护政策相结合,甚至提议了一个“泛欧土壤储备”网络。但迄今为止,“这些议题似乎没有人感兴趣”。         一个障碍是,指导保护措施所需的土壤调查成本相对较高。在美国,2010年,传统的大规模土壤调查的花费为每公顷10美元。但随着新技术的使用,这些价格将会下降。例如,空间传感器能探测土壤化学特征和物理学特征,计算机模型能使用气候、地质和其他数据帮助预测土壤类型。一些研究小组已经能将成本降至0.2~0.3美元/公顷。但可靠的调查仍在陆地上——仍依靠铁锹。         但许多研究人员认为,与“生态服务”的价值相比,土壤图的成本并不高。联合国已启动国际土壤年,在2015年12月结束时,该项目将发布针对世界土壤情况的大型报告。