《BioRxiv,5月9日,A single-cell RNA expression map of human coronavirus entry factors》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-05-10
  • A single-cell RNA expression map of human coronavirus entry factors

    View ORCID ProfileManvendra Singh, View ORCID ProfileVikas Bansal, View ORCID ProfileCedric Feschotte

    doi: https://doi.org/10.1101/2020.05.08.084806

    Abstract

    To predict the tropism of human coronaviruses, we profile 28 SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) using single-cell RNA-sequencing data from a wide range of healthy human tissues. SCARFs include cellular factors both facilitating and restricting viral entry. Among adult organs, enterocytes and goblet cells of the small intestine and colon, kidney proximal tubule cells, and gallbladder basal cells appear most permissive to SARS-CoV-2, consistent with clinical data. Our analysis also suggests alternate entry paths for SARS-CoV-2 infection of the lung, central nervous system, and heart. We predict spermatogonial cells and prostate endocrine cells, but not ovarian cells, to be highly permissive to SARS-CoV-2, suggesting male-specific vulnerabilities. Early stages of embryonic and placental development show a moderate risk of infection.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.05.08.084806v1
相关报告
  • 《bioRxiv,2月18日,Single-cell Analysis of ACE2 Expression in Human Kidneys and Bladders Reveals a Potential Route of 2019-nCoV Infection》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-19
    • Single-cell Analysis of ACE2 Expression in Human Kidneys and Bladders Reveals a Potential Route of 2019-nCoV Infection Wei Lin, Longfei Hu, Yan Zhang, Jushua D. Ooi, Ting Meng, Peng Jin, Xiang Ding, Longkai Peng, Lei Song, Zhou Xiao, Xiang Ao, Xiangcheng Xiao, Qiaoling Zhou, Ping Xiao, Jue Fan, Yong Zhong doi: https://doi.org/10.1101/2020.02.08.939892 Abstract Since December 2019, a novel coronavirus named 2019 coronavirus (2019-nCoV) has emerged in Wuhan of China and spread to several countries worldwide within just one month. Apart from fever and respiratory complications, acute kidney injury has been observed in some patients with 2019-nCoV. In a short period of time, angiotensin converting enzyme II (ACE2), have been proposed to serve as the receptor for the entry of 2019-nCoV, which is the same for severe acute respiratory syndrome coronavirus (SARS). To investigate the possible cause of kidney damage in 2019-nCoV patients, we used both published kidney and bladder cell atlas data and an independent unpublished kidney single cell RNA-Seq data generated in-house to evaluate ACE2 gene expressions in all cell types in healthy kidneys and bladders. Our results showed the enriched expression of all subtypes of proximal tubule cells of kidney and low but detectable levels of expression in bladder epithelial cells. These results indicated the urinary system is a potential route for 2019-nCoV infection, along with the respiratory system and digestion system. Our findings suggested the kidney abnormalities of SARS and 2019-nCoV patients may be due to proximal tubule cells damage and subsequent systematic inflammatory response induced kidney injury. Beyond that, laboratory tests of viruses and related indicators in urine may be needed in some special patients of 2019-nCoV. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《bioRxiv,2月21日,Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-22
    • Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses Furong Qi, Shen Qian, Shuye Zhang, Zheng Zhang doi: https://doi.org/10.1101/2020.02.16.951913 Abstract The new coronavirus (2019-nCoV) outbreak from December 2019 in Wuhan, Hubei, China, has been declared a global public health emergency. Angiotensin I converting enzyme 2 (ACE2), is the host receptor by 2019-nCov to infect human cells. Although ACE2 is reported to be expressed in lung, liver, stomach, ileum, kidney and colon, its expressing levels are rather low, especially in the lung. 2019-nCoV may use co-receptors/auxiliary proteins as ACE2 partner to facilitate the virus entry. To identify the potential candidates, we explored the single cell gene expression atlas including 119 cell types of 13 human tissues and analyzed the single cell co-expression spectrum of 51 reported RNA virus receptors and 400 other membrane proteins. Consistent with other recent reports, we confirmed that ACE2 was mainly expressed in lung AT2, liver cholangiocyte, colon colonocytes, esophagus keratinocytes, ileum ECs, rectum ECs, stomach epithelial cells, and kidney proximal tubules. Intriguingly, we found that the candidate co-receptors, manifesting the most similar expression patterns with ACE2 across 13 human tissues, are all peptidases, including ANPEP, DPP4 and ENPEP. Among them, ANPEP and DPP4 are the known receptors for human CoVs, suggesting ENPEP as another potential receptor for human CoVs. We also conducted "CellPhoneDB" analysis to understand the cell crosstalk between CoV-targets and their surrounding cells across different tissues. We found that macrophages frequently communicate with the CoVs targets through chemokine and phagocytosis signaling, highlighting the importance of tissue macrophages in immune defense and immune pathogenesis. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.