《Yield10生物科学在油料作物上获得新的产量性状基因C3003和新性状基因C3008的田间试验》

  • 来源专题:转基因生物新品种培育
  • 编译者: zhangyi8606
  • 发布时间:2018-11-30
  • Yield10生物科学公司,一家开发新技术以创造逐步改善作物产量提高全球粮食安全的公司,宣布其2018年的田间试验项目已经开始,基于最近在加拿大和美国的研究地点完成的种植。

    在这个计划中,Yield10正在评估山茶和油菜中新的产量性状基因C3003,并在加拿大的地点膨大大豆种子。在以前的田间试验中,C3003已显示出有希望改善油籽产量。Yield10也首次评价了美国Camelina的基因组编辑性状C3008。在完成这些田间试验之后,公司预计在第三季度收获植物,并在2018年第四季度报告研究结果。

    “由于最近的季节性热浪,我们在加拿大草原上经历了艰苦的种植条件。不得不说的是,我们的测试场地现在种植了,而且我们的团队正在执行一套全面的研究评价油料作物中的C3003,”Yield10生物科学首席科学官Kristi Snell博士说。“我们期待着现场数据的采集,将使我们能够继续优化c3003的使用来提高商业油料作物种子产量,并确定潜在的市场机会来解决全球粮食安全的未满足的需要。”

    Snell博士继续说:“今年首次对C3008在田间进行的评估将是我们在开发和评估油料作物的基因组编辑性状的研究中的一个重要里程碑。C3008是许多基因靶标之一,包括最近从密苏里大学获得许可的C3007基因,我们计划通过多个基因组编辑来堆叠,作为显著增加油料含量和改善油料作物的油料稳定性的新策略。今年对C3008的实地评估旨在提供性能基线,以便与未来使用包含叠加编辑的新植物系的结果进行比较。”

  • 原文来源:http://news.agropages.com/News/NewsDetail---26807.htm
相关报告
  • 《新型转基因玉米产量提高10%》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-11-15
    • 长期以来,基因工程的支持者们一直坚信,它将有助于满足全球日益增长的粮食需求。然而,尽管已经培育出许多抗虫害和抗除草剂的转基因作物,科学家在促进农作物产量方面却一直难有作为。如今,研究人员首次证明,通过改变一种促进植物生长的基因,他们终于可以放心地将玉米产量提高10%,而不用管生长条件是好是坏。 “这太不可思议了。”并未参与该项研究的美国艾姆斯市爱荷华州立大学分子生物学家Kan Wang说。她表示,除了提高玉米产量外,新的转基因技术还将激励研究人员努力提高其他农作物的产量。 全世界种植最广泛的转基因作物(包括大豆、玉米和棉花)都是通过一些相对简单的基因改良创造出来的。例如,通过将细菌的一个基因添加到特定的农作物品种中,科学家赋予了它们合成一种可以杀死多种昆虫的蛋白质的能力。另一种简单的基因操作结果可以使农作物抵抗草甘膦或其他除草剂,这样做的一个好处是让农民可以在不侵蚀土壤的前提下除掉杂草。还有一种操作可以在干旱时保护农作物。但是,由于植物的生长过程涉及许多复杂的遗传因素,因此想要培育出在良好条件下产出更多粮食的农作物,难度很大。 从2000年开始,世界各地的转基因公司开始认真筛选能够提高农作物产量的单个基因。然而只有少数经过鉴定的基因显示出了希望,并且由于成功率低,许多公司已经减少或停止筛选与农作物产量有关的基因。 但是Corteva农业科学公司(一家位于特拉华州威明顿的化学和种子公司)的研究人员决定研究那些像总开关一样影响农作物生长和产量的基因。 研究人员选择了在许多植物中常见的一类名为MADS-box的基因,然后在其中选择了一种基因(zmm28)来改变玉米植株。研究调节发育的基因的挑战在于确保它们在正确的时间和正确的组织类型中开启正确的数量。参与领导这项研究的Corteva农业科学公司的植物生理学家Jeff Habben说,如果基因过于活跃,“很容易把植物搞得一团糟”。 研究小组的目标是使zmm28与一个新的启动子融合,后者是一段控制基因激活时间的脱氧核糖核酸。在尝试了十几次之后,他们找到了一种可靠的方法。 通常,当玉米开始开花时,zmm28就会启动。而增加的启动子能够比自然发生更早地启动zmm28,并且在开花后继续促进基因的有益作用。 “如果你让基因工作得更努力、更长久,就能让植物表现得更好。”Wang说。 研究人员在48种商用玉米中测试了增强基因的表现,这些玉米被称为杂交玉米,通常用于饲养牲畜。在2014年至2017年的美国玉米种植区田间试验中,研究人员发现,转基因杂交作物的产量通常比对照组作物多3%~5%。 研究小组本周在美国《国家科学院院刊》上发表报告称,有些玉米的产量增加了8%~10%。同时不管生长条件是好是坏,这种好处都是存在的。 “这是转基因作物在田间环境中对产量发挥实际作用的最好例子之一。”英国哈彭登市洛桑研究所农作物科学家Matthew Paul说。 导致玉米增产的原因有几个。首先,经过基因改造的植物的叶子要稍大一些,从而使植物将阳光转化为糖分的能力提高了8%~9%。 “这种增长确实是一件大事。”Corteva农业科学公司植物生理学家Jingrui Wu说,因为通过基因工程很难改善光合作用。 其次这些植物在利用氮的效率方面也提高了16%~18%。氮是一种重要的土壤营养物质,复杂的遗传因素使其成为植物育种家难以控制的另一种特性。 比利时佛兰德斯VIB研究所分子生物学家Dirk Inze说:“从商业角度来说,这看起来很有希望。”Corteva农业科学公司已经向美国农业部(USDA)申请批准新的高产杂交品种。(虽然zmm28及其启动子在玉米中自然存在,但它们是使用被USDA监管的一种生物技术配对的) Habben估计,这项新技术大概需要6到10年的时间才能获得世界各国的正式批准。Inze说,相关的调控基因很有可能提高其他谷物的产量。 玉米的大规模田间示范“强化了我们的信念,即如果我们处理得当,内在产量是可以提高的”。Wang说,“这确实会给人们带来灵感。”
  • 《小麦等大基因组作物核心基因组低成本组装及新基因挖掘研究获进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-08
    • 6月21日,Nucleic Acids Research 期刊在线发表中国科学院分子植物科学卓越创新中心/植物生理生态研究所张一婧研究组与中国科学院遗传与发育生物学研究所童依平研究组合作完成的题为CGT-seq: epigenome-guided de novo assembly of the core genome for divergent populations with large genome 的方法学论文。该工作开发并优化实验与计算流程,实现低成本组装小麦等大基因组作物的核心基因组。 博士研究生齐美芳、李子娟和刘春梅为共同第一作者,水稻实验材料及数据获得植生生态所研究员林鸿宣的帮助。相关工作得到中国科学院A类先导及自然科学基因项目的资助。 植物高度的遗传多态性为分子育种提供了丰富的遗传资源,确定重要农艺性状的根本方法在于比较不同群体或比较栽培种和野生种间遗传多态性与表型的关联。然而,很多经济物种经历了长期的驯化,基因组复杂而庞大。例如,目前普遍种植的小麦是6倍体,全基因组有17Gb,另外,广泛栽培的大麦、棉花、玉米、花生和大豆都具有Gb尺度的基因组,即便是覆盖度要求较低的重测序实验都需要极高的成本。而且,还存在不少未测序的大基因组经济物种,全基因组测序成本非常高,特别是对于群体水平的研究全基因组测序不现实。怎样有效刻画大基因组多态性群体的遗传多样性是一个挑战性的工作。由于很多研究并不需要知道基因组所有的碱基序列,所以人们针对大基因组物种开发了各种低成本的替代测序技术。其基本原理通常是对全基因组序列进行选择性测序,但是这些方法普遍对已有的基因组序列信息要求高,而对于遗传变异大的群体,依赖参考基因组的技术,包括外显子测序,甚至全基因组重测序,都会显着低估多态性。因而,开发不依赖参考基因组直接捕获基因及调控区序列的简化基因组测序方法对于研究多态性高的群体具有重要价值。该方法的理论依据在于调控基因活性的重要表观修饰普遍富集在基因及启动子区(图A-B),通过免疫共沉淀技术及优化拼接方案从而有效获得基因及附近序列(图C)。对小麦中国春品种进行核心基因组组装获得的片段与基因区域高度吻合(图D),能够高效挖掘新基因(图E-F)、调控区域(图G)及多态性位点(图H-J)。该方法已申请专利,其优势在于不依赖参考基因组序列,直接捕获基因及调控区序列,从而极大地降低群体核心基因组拼接的成本,有力地提高大基因组物种的分子遗传与群体遗传学研究效率。