《中国环流器二号M装置建成:问鼎人类终极能源 中国人在奔跑》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2020-12-23
  • 12月4日下午,在成都西南角的中核集团核工业西南物理研究院(简称核西物院),中国环流器指挥控制中心突然沸腾了。大家相互击掌祝贺,有的人眼里还噙满了泪花。
    此时,位于大厅中央的巨型屏幕上,一道电光闪过,稍作间歇又是一道,频繁闪烁……由该院自主设计建造的新一代先进磁约束核聚变实验研究装置中国环流器二号M装置(HL-2M)成功放电。
    “这标志着HL-2M已经建成。为了这一刻,大家拼搏了许多个日日夜夜。”中核集团核西物院中国环流器二号M项目负责人刘永说,“作为我国新建的的先进托卡马克装置,HL-2M等离子体离子温度可达到1.5亿摄氏度,可实现高密度、高比压、高自举电流运行,将大力提升我国堆芯级等离子体物理研究及相关关键技术研发先进水平,为我国深度参与ITER计划及自主设计建造聚变堆提供重要技术支撑。”
      ITER“卫星”
    万物生长靠太阳。支撑人类社会发展的一切能量来自太阳,而太阳的能量则来自核聚变。
    其实,核聚变并不神秘,只要将氢的同位素氘和氚的原子核无限接近,使其发生聚变反应,就能释放出巨大能量。
    然而,原理看似简单,但要让聚变反应持续可控,可以说难于上青天。
    据刘永介绍,要实现可控核聚变反应,必须满足三个苛刻条件:一是温度要足够高,使燃料变成超过1亿摄氏度的等离子体;二是密度要足够高,这样两原子核发生碰撞的概率就大;三是等离子体在有限的空间里被约束足够长时间。

    这就是聚变界通常所说的“三乘积”中的要素——离子温度、密度和能量约束时间。别小觑这三要素,自上世纪50年代至今,国际聚变界的科学家们可谓前赴后继、攻坚克难、煞费苦心、孜孜不倦,但仍然面临巨大的挑战。为此,ITER计划被推出,集全世界力量以攻克难关;中国成为七方重要成员之一。
    其实,中国可控核聚变研究与世界几乎同步。自1955年钱三强、李正武等老一辈科学家提议开展“可控热核反应”以来,取得了一系列重要科研成果。特别是1965年核西物院成立后,先后发展了脉冲磁镜、角向箍缩装置、仿星器、超导磁镜、反场箍缩装置和托卡马克等多种类型的磁约束聚变研究装置。其中,最为典型的是1984年在四川乐山建成的中国环流器一号(HL-1)。这是我国核聚变研究史上的一个重要里程碑,标志着我国可控核聚变研究从原理探索进入规模化实验研究新阶段。从此,中国核聚变研究由小到大、由弱到强,进入高质量发展的新阶段。2002年,由核西物院建造的中国环流器二号A(HL-2A)成为这一时期的代表。这也是我国第一个具有偏滤器位形的托卡马克装置。
    刘永说:“HL-2M装置是HL-2A的改造升级装置,是实现我国核聚变能开发事业跨越式发展的重要依托装置,同时也是我国消化吸收ITER技术不可或缺的平台。”
    据他介绍,自2006年国际启动ITER计划后,各国均是一方面积极参与ITER计划,另一方面也在推动本国核聚变研究。有的是改进以前的科学装置,有的是建设新的科学装置,目的是在ITER建成前的这一段时间里,依托各自国内装置和平台全面掌握ITER的技术和能力。
    “对于中国人来说,若要在ITER上发挥更多作用,像HL-2M这样高参数运行的装置不可或缺,一方面支撑ITER,为ITER开展预先研究、并探索相关物理与工程问题,另一方面就是作为我国可控核聚变人才培养的重要平台。这是承上启下的重要一步,不可逾越。”刘永补充道,“通常像HL-2M这样的高参数运行装置,可被称为ITER‘卫星’。而全世界正在运行的称得上ITER‘卫星’的科学装置不多。HL-2M名副其实。”
      中国聚变不能只等ITER
    1984年,核西物院建成了我国首座受控核聚变托卡马克大科学装置——中国环流器一号(HL-1),之后陆续建造中国环流器新一号(HL-1M)、中国环流器二号A(HL-2A),HL-2M是核西物院建造的第四座托卡马克实验装置。在先进性方面,HL-2M与前三个装置相比有着跨越式的提升。
    据刘永介绍,HL-2M在装置物理与结构设计、特殊材料研制与连接技术研发、关键部件制造与总装集成等方面取得了多项突破。
    的确,为了确保装置的性能能够满足在堆芯级等离子体参数条件下开展物理实验研究的要求,HL-2M与HL-2A相比,装置主机性能参数需大幅提升,为此,采用了更先进的结构与控制方式,造成工程技术难度及工艺复杂性大幅增加。
    那么,核西物院为什么会选择迈出跨越式发展这一步呢?
    ITER计划实施后,中国核聚变如何发展成为了摆在刘永等中国核聚变人面前无法回避的问题。当时,HL-2A已经难以满足核聚变研究的要求,他们亟需性能更高、参数指标与国际先进水平媲美的平台做支撑。
    “当然,参数越接近ITER越有利于中国在全球核聚变领域发挥作用。但是,这是对国家综合实力,特别是工业制造能力一项严峻的考验。”刘永回忆道。
    在前ITER时代,参数很低的装置显然没有必要建造;但是对于建造参数高的装置,中国技术积累够不够,是否具备建造能力,人才是否有支撑,经费是否能保障,成为一长串问题。决策保守,没有创新性,价值有限,难以前进;决策冒进,我国工业基础难以支撑,风险太大。如何平衡和把握先进性和可靠性之间的关系,成为了大家反复讨论的焦点。但专家们最终的意见是:努力跳,够得着。
    刘永再次强调说,中国聚变研究不能只等ITER。中国全方位参与ITER,但也必须要有自己的研究计划,为此必须要有HL-2M这样能与国际一流比肩的装置和平台做支撑。
    让刘永等人庆幸的是,此项认知得到了政府主管部门、我国聚变研究领域的广泛支持。
    HL-2M于2009年由国家原子能机构批复立项,由核西物院自主设计建造。
    当然,在ITER计划执行中,中国始终恪守国际承诺,相关企业和科研人员勇挑重担,与国际同行齐心协力,为计划的顺利推进贡献了中国智慧和中国力量。今年7月28日,在ITER计划重大工程安装正式启动仪式上,国家主席习近平致贺信,并表示中国愿继续同各方加强科研交流合作,合力突破重大关键科学和技术,推进全球科技创新,为增进各国人民福祉、实现全球可持续发展不断作出新贡献。
      为人类核聚变事业贡献中国力量
      十年弹指一挥间。在这闪烁的电光之间,十年里的画面一幕幕浮现在大家眼前。
    为了成功制造HL-2M关键核心部件真空室,建造人员冉红数次腰疾复发,她都强忍着坚守制造现场,解决一系列技术问题和难点,连续克服了数个技术瓶颈;同为建造人员的宋斌斌,累计驻厂近5年,连续3年放弃国庆假期和高温假,坚守制造现场,即使车间高达40℃以上,挥汗如雨的他也未曾离开;
    为了中心柱安装万无一失,线圈组负责人刘晓龙带领团队成员反复讨论,一个月内做了十几个方案,反复验证,甚至整个团队放弃了2018年整个春节,在现场苦战整整3个月;
    装置工程联调是装置放电前的关键环节,需要上百个系统同时调试并达到运行条件。联调协调人季小全一边组织团队讨论调试方案和计划、一边组织专家讨论解决技术难点,晚上还要协调各外协厂家加班加点赶进度,经常晚上最后一个走……
    为了实现“努力跳、够得着”,HL-2M中的不少材料和工艺都是前人没有做过的。可以说,从装置的前期调研、设计到建造、安装,核西物院HL-2M工程项目的科研人员、设计师、工程师和管理团队300多人都不断在向极限挑战。
    刘永说:“的确,现实情况比起初预想要困难得多,但是我坚信我们能够成功,因为我们具备这个能力和水平。”
    精诚所至,金石为开。在建设HL-2M装置过程中,核西物院联合国内多家研制单位,在装置物理与结构设计、特殊材料研制、材料连接与关键部件研发、总装集成等方面取得了多项突破,实现了可拆卸线圈结构,增强了控制运行水平,提升了装置物理实验研究能力;攻克了高镍合金双曲面薄壁件大型真空容器模压成型和焊接变形控制等关键技术;掌握了具有国际先进水平的异形铜合金厚板材制造成型工艺,实现了高强度膨胀螺栓组件的自主国产化;研制成功国际先进水平的国内首台大型立轴脉冲发电机组。
    刘永说,HL-2M装置的建成,为开展堆芯级等离子体物理实验提供了硬件平台,将有助于提升我国核聚变能源领域的自主创新能力,为我国未来核聚变堆的自主设计与建造打下坚实基础。
    但他冷静地说道,ITER计划是实现聚变能应用的关键一步,要实现聚变能的商用,还有很长的路要走,需要几代核聚变人接力奔跑。核西物院将依托HL-2M这一先进平台,培养并储备一批核聚变领域年轻的技术研发人才与团队,为人类核聚变事业贡献中国智慧和中国力量。

     

  • 原文来源:http://www.cnenergynews.cn/guonei/2020/12/05/detail_2020120584542.html
相关报告
  • 《中国环流器二号M装置预计今年建成离子温度将超1亿摄氏度》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-03-04
    • 全国政协委员、中核集团核工业西南物理研究院段旭如3日在接受记者采访时表示,该院预计于今年建成的我国新托卡马克装置——中国环流器二号M装置(HL-2M)等离子体参数将大幅度提高到近堆芯水平,离子温度将超过1亿摄氏度。 托卡马克装置意在通过可控热核聚变方式,给人类带来几乎无限的清洁能源,俗称“人造太阳”。要实现可控热核聚变,必须满足三大条件:离子温度达到1亿摄氏度以上、长时间约束在有限的空间中、足够高的密度。 “‘人造太阳’装置中的等离子体主要由电子及离子组成。”段旭如说,我国现有托卡马克装置等离子体电子温度已达到1亿摄氏度,离子温度达到约5千万摄氏度。因热核聚变中参与聚变反应产生能量的是离子,因此必须提高等离子体离子温度并超过1亿摄氏度。 段旭如告诉记者,要将我国托卡马克装置等离子体离子温度从5千万摄氏度提高到超过1亿摄氏度,需要更高的装置参数、注入并吸收更多能量、实现更先进的运行模式。 HL-2M装置将具备这一能力。它规模大、参数高,采用了更先进的结构与控制方式,能承载更大线圈电流,有望将电流从我国现有装置的1兆安培提高到3兆安培。 值得一提的是,等离子体电流提高至3兆安培意义重大。它将极大提升等离子体参数与装置能力,用于开展聚变堆相关关键物理与工程技术研究,为我国参与国际热核聚变实验堆(ITER)实验与运行以及自主设计建造未来聚变堆提供重要技术支撑,并培养核心骨干人才。
  • 《世界领先的强磁场 中国人这样建》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-01-15
    • 2018年12月初,武汉国家脉冲强磁场科学中心,一次次电磁风暴的袭击,让物质被迫吐露不为人知的秘密。最先进的电源、磁体和控制系统,打造了这一世界顶尖水平的强磁场装置。 “磁场与电流成正比,而磁体承受的力和热,与磁场的平方成正比。所以越往上走越难。就好像百米跑从9.9秒提高到9.8秒那样难。”国家脉冲强磁场科学中心主任李亮说。 “美国从70T(特斯拉)到90T走了20年,德国用了15年,中国则是4年。”李亮说。 线圈使用寿命超出国际同行近1倍 1820年,丹麦人奥斯特无意间发现,导线通电,附近的小磁针会跳动。从此,人们一直在用通电线圈来制造磁场。瞬间强电流产生的几毫秒时间的强磁场,叫做脉冲强磁场,它比稳态磁场更高。 国家脉冲强磁场科学中心的研究人员告诉我们:他们用小指头粗细的导线,绕成线圈,接上2.5万伏特的电压,流过4万安培的瞬间电流,就可以产生几十T的脉冲磁场。 但通电线圈会被磁体内部应力拉长和压扁。李亮说,他们的线圈承受的应力,是“蛟龙”号在7000米海底面临压强的50倍。而且磁体在放电过程中会产生巨大热量,线圈泡于液氮以降温;通电瞬间零下200摄氏度的液氮砰地蒸发掉。 几个毫秒内通入磁体的能量如10公斤TNT的能量,线圈经常被炸碎。俄罗斯和日本科学家先后用极端办法制造过上千T的磁场,那也是目前人类取得的最强磁场。但必须牺牲线圈,是一次性的,磁体线圈无法重复利用。 美国国家强磁场实验室创纪录的线圈用的是铜铌合金,最结实——100T磁场纪录的最大功臣。中国团队则使用国内自主研发的铜铌合金,强度仅为前者2/3。 中国人另辟蹊径,从理论分析挖掘潜力,通过精确计算,大幅提升高分子纤维层层缠绕加固的效果,就像铁环箍住炮筒。它比凯夫拉还结实,是世界上最强韧的纤维。纤维浸泡环氧树脂,也充当线圈的绝缘层。 彭涛教授专职绕线。“如果浸泡树脂不够充分,反光是不同的。”彭涛说,从线圈的纹路和颜色,老手能看出瑕疵。瑕疵让线圈更早崩溃。 美国磁体线圈直径一米,比中国的大很多,应力更低,不易坏,但美国线圈平均通电500次就会坏掉;彭涛做的线圈可使用800次。 中国电源便宜又强大 李亮曾在欧洲和美国工作多年,1992年以来世界上最强的磁体大多有他参与设计。 “我们是弯道超车。”李亮说,“我们从无到有,总结各家的经验,所以设计的整体性、系统性更强。” 美国国家强磁场实验室发电机电源,两层楼高,巨大的飞轮储能,瞬间放电——本是核聚变实验用的,100T纪录的第二大功臣。 中国电源则分3部分:发电机电源(功率不到美国的1/10);20几个电容储能型电源模块;铅酸蓄电池组。通过结构优化,仅使用几个电容储能型电源模块,就叠加出90.6T的磁场脉冲峰值。美国实现100T需115兆焦耳能量,中国实现90T只用10兆焦。 专攻电源的丁洪发教授说:“几十个模块的开关时间差要限制在微秒级。元器件也要筛选,让电路的延迟一致。” 2008年开工建设,大部分设备自研自造,国产化率85%。“人家是外包给专业公司,我们是自己动手。”李亮说。 每组电容储能型电源100万元。整个电源系统投入仅是美国人的一个零头。液氦回收系统只有国外同类设备1/4的价格,回收的氦气每年可节约500万—600万元实验消耗。 脉冲平顶磁场十分重要,但美国人做平顶脉冲磁场,一年只能使用50—60次。中国人改进了电源和控制系统,则像开微波炉一样简单。 “国际专家说我们花了1.2亿元,干了1.2亿美元的活儿。”李亮说。 测量需要极端精细 2013年10月,在全世界专家的见证下,中国装置首秀成功。国际权威报告说:中国的磁体和电源技术世界顶级;控制系统国际领先。 虽然最高磁场纪录不及美国,但中国装置优势明显——一套中央控制系统实现3类电源和8个实验站的灵活组合。这是中国磁场的一个杀手锏,更有利实验。控制系统负责人韩小涛教授说:“别人都是一个磁体发一种波形。我们的可以一个磁体产生多种波形。” 美国在2013年实现了100.75T,德国实现94T,中国也以90.6T成为90T俱乐部的一员。而目前有望刷新纪录的只有美、中。 强磁场将考问出新的物质特性,催生下一代电子材料和芯片。朱增伟教授说:“半金属比如铋和锑,适合放在强磁场下研究极端情况。” 2018年11月,北京大学发现“对数量子震荡”,实验就在武汉做。在58T磁场下清晰观测到5个振荡,才得以发现对数规律。 强磁场的“风暴眼”只有20毫米长,在杏仁大小的空间里布置所有的样品和感应器,跟微雕差不多。 “涡流、热效应、震动、电磁干扰……测量永远伴随噪音。”左华坤工程师说。 想一次测出高质量信号难,因为干扰因素太多。样品杆浸泡在液氦里,还跟外面隔着一层真空,但线圈一瞬间的高温,仍然会造成样品零点零几度的热扰动。传感器的线路在脉冲磁场的作用下,也可能震动几个微米产生噪声。 还有很多不可测因素,比如地线“零”电压的不稳定,湿度差异,都可能造成测量结果不同。 “如果不这样难测,那些物理难题也就不会遗留到现在了。”左华坤说,论电磁测量精度武汉国家脉冲强磁场科学中心已不弱于任何同行。 “中心建成后,不仅国内科学家基本不再去国外做实验了,还吸引了剑桥、斯坦福等众多国外用户。”李亮说。