《"植物制"碳纤维,有望普及碳纤维应用范围》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2018-01-19
  • 碳纤维(Carbon fiber)是钢铁的 5 倍强韧,重量却不到钢铁的四分之一,被誉为材料界的「超人」。同时碳纤维是由石油等其他稀有成分制成,因此通常出现在单价高、特殊需求的产品上,像自行车、风力发电机叶片、客机、一级方程式赛车等,突显它尊爵不凡的地位。

    不过这样的情况,有机会出现转变。

    碳纤维主要是由聚丙烯腈化学制成,目前是以油、氨、氧气和昂贵的催化剂制造出聚丙烯腈,过程会产生大量热量与有毒副产物,对环境会造成相当污染。

    日前,美国国家可再生能源实验室(National Renewable Energy Laboratory)成立小组开发聚丙烯腈新生产技术,该技术利用人们不食用的植物部位,如玉米梗或小麦梗,将这些物质分解成糖,再转化成酸,并与唾手可得的催化剂结合生产聚丙烯腈。该过程与传统方法相比不会产生过量热量,也不会产生有毒副产品。

    这项技术未来有望将碳纤维的应用拓展到生活更多层面,像碳纤维制成的汽车将比钢制成的汽车更轻,相同的行驶距离需要燃料更少,节省能源也减少全球暖化的碳排放。同时碳纤维的价格也能趋于稳定,不受石油价格波动的影响。

相关报告
  • 《CSIRO:开发优质、高强、低成本的碳纤维》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-08-06
    • 英联邦科学与工业研究组织(简称CSIRO)是澳大利亚的国家科学机构,目前正在开发下一代的碳纤维。 具体而言,其研究人员旨在通过控制聚丙烯腈(PAN)前驱体的分子结构及其生产过程,来确保生产出的碳纤维质量更优、价格更便宜且性能更好。 “到目前为止,碳纤维只实现了10%的理论强度。”CSIRO的碳纤维团队负责人Andrew Abbott表示。 “限制强度的因素主要是纤维的表面缺陷和微观结构,以及前驱体中的杂质。”CSIRO的纤维计量项目负责人Tony Pierlot解释说,“因此,控制前驱体的结构能够提高碳纤维的强度。” 该碳纤维团队组合了CSIRO的高分子化学和纺织技术专业知识(图片来自CSIRO) 2017年,CSIRO与迪肯大学的Carbon Nexus设施(该设施于2013年推出了其碳化生产线)合作,推出了自己的湿法纺丝生产线,用于生产PAN原丝。 CSIRO和Carbon Nexus都是迪肯大学位于吉朗(墨尔本西南约75公里)的Waurn Ponds校区的一部分。 这些组织正在与作为吉朗先进纤维集群一部分的当地复合材料行业展开合作,包括知名的复合材料制造商如Carbon Revolution和Quickstep(同样在Waurn Ponds校区内),以及GMS Composites、Sykes Racing和ACS Composites等。 “CSIRO的研究集中在碳纤维生产的第一步,包括将丙烯腈聚合成聚丙烯腈,然后纺丝并进一步加工PAN 以生产出更高质量、更便宜的原丝纤维。”Abbott解释说。PAN的生产过程,占碳纤维成本的50%,但却决定了碳纤维70%~90%的性能。“迪肯大学的技术涉及碳纤维生产的最后步骤,包括氧化和碳化。”他继续说道,“他们已授权给LeMond Composites公司(美国田纳西州橡树岭)的技术可用于快速氧化,目的是降低这些最后生产步骤的成本。” 为实现其开发下一代碳纤维的目标,CSIRO正在使用一套战略工具,包括:RAFT 聚合、FLOW化学工艺和CarbonSpec计量方法。 “我们的目标是,生产一种强度提高了20%的航空级别的碳纤维。”Abbott表示,该团队希望到2020年底有一些初步结果。 CSIRO碳纤维团队 凭借5000名员工、55个基地、8个业务单元和大约10亿美元的预算,CSIRO 项目涉及的主题广泛,如3D打印、生物聚合物、医用植入物、智能服装、天文/太空探索,且每年有2800多名合伙人加盟。 “CSIRO发明了无线网络并取得了专利,然后用这笔收入资助其他研究。”Abbott解释说。 其55个基地之一位于美国加州的硅谷。CSIRO US让澳大利亚的研究人员参与到美国项目中,以加速太空、农业、节水、野火和智慧城市等领域的科技进步,目的是集聚深入的研究能力和处理各种现实问题的经验,实现开放式的创新合作。 “在复合材料方面,CSIRO开发了新的树脂和工艺技术。”他继续说道,“我们还在复合材料建模和工艺模拟以及碳纤维性能测试方面做了大量研究,比如,我们开发了测量碳纤维横向模量的新仪器,然后我们输入测量结果以改进我们的建模和仿真。” “CSIRO与波音公司拥有30年的战略合作关系。”Abbott说,“我们在2016和2017年被认定为波音的年度技术供应商。”CSIRO的碳纤维团队还与美国密西西比南部大学合作。 湿法纺丝试验生产线 CSIRO的湿法纺丝生产线包括热水喷淋(左上)和控制拉伸用辊(图片来自CSIRO) 为了完成有关碳纤维前躯体的必要研究,CSIRO首先必须建成自己的湿法纺丝生产线。 “世界上只有少数的制造商能生产碳纤维,且每一家都有自己的技术机密和专利配方。”CSIRO的总裁Larry Marshall博士在2017年新的生产线启动仪式上如是说。这条试验生产线由专业生产聚合物和纤维加工设备的机器制造商MAE公司(意大利Fiorenzuola d'Arda)为其订制。“它被设计成像一条商用的生产线,但规模较小。”Abbott解释道。 CSIRO在其博客中用“做意大利面”来描述这条生产线的工作原理。 类似于做意大利面的面团,一种名为dope的聚合物溶液被用于纺制PAN原丝:好比是将面团揉好,然后压制使其通过模头,制成细长的意大利面条。Dope经混合、凝固后,通过多孔的喷丝板以进行纺丝,从而生产出500~12000股不同的PAN纤维,所有这些纤维比人的头发丝还细。在进行缠绕从而进入Carbon Nexus的碳化生产线之前,这些纤维会得到清洗、在辊筒上拉伸、在一系列溶液中稳定,然后是蒸干。 CSIRO的湿法纺丝生产线(图片来自CSIRO) “我们花了很长时间才完全理解了如何制造碳纤维及其前体原料。”Abbott说道,“没有人真的想帮助我们,所以我们只能自己学习。然而,现在我们已经完全控制了前驱体的制备过程,这是关键,然后我们使用碳链进行碳化。” RAFT聚合 RAFT为聚合提供了更多的控制,包括聚合物的大小、组成和结构。它利用聚合物主链中的反应端基来增加功能以及复杂的结构,如接枝、星形和梯度聚合物等(图片来自CSIRO) CSIRO正在使用的另一个工具是其专利的以及商业化的RAFT(可逆加成-裂解链转移)技术。 RAFT是一种复杂的可控自由基聚合形式,能以对成分和结构前所未有的控制能力来实现订制聚合物的合成。 从新型药物输送系统到工业润滑油和涂料,RAFT的应用范围非常广泛,虽然如此,CSIRO的碳纤维团队却用它来控制PAN的聚合过程。 “从单体到聚合物的常规聚合会产生广泛的多分散性,或者说,聚合物链有很多不同的长度。”CSIRO的高分子化学团队负责人Melissa Skidmore说,“但是,如果我们加入RAFT 试剂,现在我们就能得到长度几乎相同的聚合物链,这样,分子量的分布就更窄。我们仍然使用相同的引发剂、单体和溶剂,只是加入了RAFT。” “分子量影响纺丝液的黏度。”Skidmore说,“传统上,dope溶液中较高的分子量导致原丝纤维表面出现沟槽。加入RAFT则降低了dope溶液的黏度,导致更高的固体负荷。去除该聚合物中的超高分子量聚合物,可能带来纤维中更好的分子排列以及性能的改善。”她补充说,低分子量对纤维有塑化作用。 “利用RAFT生产出的PAN聚合物,可以获得更密集、更均匀且结构缺陷更少的前体纤维,这也有助于加速碳化并降低成本。” 利用RAFT生产的PAN聚合物拥有控制更好的分子量,从此图更窄的分布中可以看出(左),从而得到了总分子量较高的dope,但与目前商用的PAN相比,它的黏度仍然较低(右)(图片来自CSIRO) “这也让我们有机会接触到复杂的聚合物结构。”Skidmore表示,“RAFT允许对聚合物基团作进一步的化学处理。”一个可派上用场的例子是,当dope溶液得到处理而凝结成纤维时。“在聚合物溶液的理想特性和混凝条件之间,存在一个微妙的平衡。”她补充道,“该聚合物是95%的 PAN 和5%的添加剂。由于RAFT聚合物的行为不同,我们认为,我们可以减少一些传统的添加剂,将较高百分比的纤维转化为高固体含量的纤维,以减少缺陷。我们正在进行测试。” 尽管目前还不是受关注的焦点,但RAFT依然凭借其能在聚合过程中添加功能而变得非常有趣,比如,研究人员们一直在研究如何制造一种复合材料,使其具有捕获CO2的高吸附性能,也就是说,CO2会附着在复合材料的分子表面。 多功能的复合材料已经受到飞机和电动汽车制造商们的青睐,因此,新型PAN和拥有添加功能的碳纤维可能成为未来复合材料行业的重要解决方案。 连续的FLOW工艺 “利用RAFT,我们可以控制聚合反应。”Abbott说,“但利用FLOW,我们可以对纤维的形成作更多的控制。” 间歇式与流动式聚合反应器示例 FLOW将聚合转化为连续过程而不是间歇过程。 Abbott和Skidmore解释说,虽然目前使用的间歇式反应器已经很成熟,不仅易于设置,还能有效混合和监测反应动态,但需要的容量却比连续加工的反应器更大,这意味着建立工业化规模的间歇式反应器是昂贵的,而且这些大容量的间歇式反应器在占用空间和能耗方面也是低效的。 与间歇式工艺相比,连续加工的反应器更小更便宜,易于扩展,更加节能,可提供卓越的过程控制和更好的再现性。 但是,由于是一条专用的连续生产线,因此在不同的参数和产品之间切换时缺乏灵活性。 此外,还有安全和可持续性方面的优势。 “目前,PAN的生产在环境上是不可持续的,特别是在毒性方面。”Skidmore说,“要持续改善聚合过程的安全性,就要隔离那些有毒、有气味和易燃的反应剂,并用自动化的设备来处理,但这将增加生产线的复杂性,需要采取更高程度的监控。” 虽然还有待进一步发展,但Abbott认为,FLOW聚合技术是积极有效的:“碳纤维本身是可变的,所以你可以做任何能够减少这种可变性以提高性能的事。” CarbonSpec:管理措施 CSIRO的碳纤维方法的最后一个工具是CarbonSpec。“它基本上由我们开发出来,是用来测试我们生产的纤维以更好地理解‘性能-材料’之间关系的计量方法。”Pierlot解释道,“如果你不能衡量它,就不能改进它。我们还能通过对PAN和碳纤维的最少量测试来更好地预测碳纤维的性能。” CarbonSpec是CSIRO碳纤维团队用于理解和预测纤维性能的计量方法,它包括新方法的创建,以及用于测量横向和压缩性能的仪器(图片来自CSIRO) “在碳纤维行业中,标准的做法是,使用同步辐射X射线计算机断层扫描(CT)法测定纤维的微观结构(同步加速器是足球场大小的粒子加速器,能产生非常明亮的X射线,该X射线被定向到相邻的光束线进行成像等)。”Pierlot说,“在澳大利亚同步加速器的光束线工作人员的帮助下,开发了一种新的专用特征描述协议,用于扫描单个PAN前驱体和碳纤维的微观结构,只需几分钟,就能获得直径小于5µm的单个纤维的微观结构图。SAXS信号有助于了解纤维中的孔隙发展情况,而WAXS信号有助于确定优化纤维模量的关键微观结构参数。同时使用这两个信号,我们可以从PAN dope到碳纤维生产这一过程的每个阶段,监控和优化机械强度和刚度。” Pierlot指出,利用CarbonSpec,该团队还在开发新的仪器和测试方法。“比如,除了通常报告的纤维的轴向特性外,我们正在测量横向模量和强度。我们认为,我们可以使用我们为此而开发的新方法来测量轴向压缩强度。”后者长期以来一直是一项挑战,因为单根碳纤维或PAN纤维的直径很小,通常只有5~10µm,这使得在不引起屈曲的情况下施加真实的轴向压应力变得非常困难。 强度提高20%的下一代碳纤维 “我们已经加强了我们对如何将聚合物转化为纤维的理解,现在正在生产商用纤维。”Abbott说,“我们正在将这些技术工具应用于其他前体聚合物以制造SIROPAN,这是使用RAFT技术的CSIRO版本的PAN,现在我们能按公斤生产这种纤维。” “下一步是评估使用RAFT聚合物的好处。”他继续说,“我们还在生产PAN,但我们在降低黏度的同时能更好地控制分子量并增加它,这样才能生产出更强的碳纤维。” 有多强? “还不确定,但我们的目标是强20%。”Abbott说,“我们知道,强10% 不足以使改变前驱体成为经济上可行的一项改进措施,因此强20%是必要的。” 1. 利用RAFT技术开发新型前体聚合物(优质聚合物或不同的性质)。 2. 开发具有商业竞争力的聚合物工艺(FLOW)。 3. 了解聚合物转化为纤维(湿法纺丝)以降低成本和提高性能。 4. 了解前驱体性能对碳纤维性能的影响,更好地预测碳纤维的性能,根据这些测量和预测优化流程(CarbonSpec)。 5. 通过工程化PAN和碳化纤维,生产适合特殊终端应用的订制碳纤维。 “碳纤维行业正以每年10%的速度增长。”Abbott说,“我们希望与那些对改善碳纤维的质量、性能、成本和可持续性感兴趣的成熟的和新的行业参与者展开合作。” “我们正在测试6种不同的前体配方并将在Carbon Nexus对它们进行碳化。” Skidmore补充道,“我们希望今年年底能有结果。从RAFT聚合物到白色纤维然后再通过碳化需要一段时间。” 这项研究获得了科学和工业捐赠基金的资助。
  • 《从泰先和中恒的破产谈碳纤维“全产业链” ——五论国产碳纤维产业化之路》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-06-26
    • 前几天严兵的“从浙江泰先、沈阳中恒的破 产案,谈碳纤维产业的发展”分析了这两家公司应经营不善导致破产,特别是指出碳纤维的生产成本高于销售成本是其主要主因,并指出国内还有很多僵尸碳纤维企业即将步入破产的行列。我认为这篇小文阐述了事实,但对碳纤维企业的生存问题没有进行深入的剖析。 1、碳纤维生产企业分类及其产品应用对象和需求量 在探讨泰先和中恒破产原因之前,本文需要先澄清一些基本概念。 大家在文中经常谈及碳纤维企业,其实碳纤维企业包括两类,一类是真正的碳纤维生产企业,多数则是碳纤维复合材料制品生产企业。这两类企业的生存环境迥然不同,前者需要巨额投资,且影响参数众多,运行参数随所用设备和原材料而变,无可借鉴的经验,往往运行数年,仍无法生产出满足用户要求的产品,正是这类企业面临着破产的危机。后者相对而言投资较少,通常可以在较短的时间内即可生产出满足用户要求的复合材料制品,达到收支平衡,进而盈利。 其次对国内的碳纤维生产厂家生产,按所所采用的技术路线可把现有的生产线分为三类,虽然对碳纤维专家,这是基本常识,但对多数碳纤维复合材料界的业内人士,并不一定很清楚。这三类技术路线所建立的生产线各生产不同的产品,用于不同的工业领域,互相间不可能兼顾,如表1所示。 其中第I类是从上世纪70年代起多数国内碳纤维生产厂家采用的生产技术,也是国内生产碳纤维最多的品种,同时也是民品市场销售和使用的主要品种。但生产的碳纤维质量和成本始终无法达到东丽的水平,也是被迫以“白菜价”销售的主要碳纤维品种。这里面有多方面的原因,但一直以低于成本价销售,致使无法长期稳定生产是主要原因之一。持续这种状态,仅从技术上攻关恐怕很难改变这种状态。第II类是最近比较时髦的技术路线,中复神鹰经持续不断的努力,攻克了干喷湿纺的技术关键,基本上达到了东丽的水平,使其产品可以与东丽T700S并驾齐驱,当然同样面临着与东丽T700S的价格战。第III类湿喷湿纺大丝束技术在国际上只有少数企业掌握,东丽虽经多年开发,均未攻克,最后转向收购ZOLTEK。国内精功已成功开发了这一技术,并生产出了产品,但性能和稳定性与国外产品有差距,由于其主要应用对象——风电叶片梁板的设计与选材开发权掌握在VESTAS手里,从而无法得到应用。 2、国产碳纤维为什么只能卖“白菜价” 作者与国产碳纤维的销售人员对民用碳纤维的价格形成进行了探讨,民用市场主要使用T300-12k级与T700-12k级碳纤维(占比高于90%),而其中性价比最高的产品是东丽的干法T700S-12k,长期售价为200元/kg,所以其他产品的售价只能参照T700S来定位自身的价格,其他T700S-12k级碳纤维的售价为140元/kg,T300-12k级碳纤维长期以来是台丽的天下,它也只能参照T700S-12k的价格定为110元/kg,只有微利或更可能是亏本销售,当然其他国产T300-12k级碳纤维就只能以100元/kg的“白菜价”销售(今年随着国外碳纤维价格的调整,普遍售价有所提高);而目前国产碳纤维企业的生产成本普遍高于销售价,国内碳纤维厂家为提高质量和降低成本,多少年来一直坚持不懈地进行攻关一直进展不大,而且近期恐怕很难突破。照此逻辑如果没有其他办法,所有的国产碳纤维企业均会步泰先与中恒的后尘相继破产。 3、碳纤维生产线分类和碳纤维在不同领域应用的种类、价格与需求量 参照林刚先生的“2017年全球碳纤维复合材料市场报告”的数据和个人对市场的了解,表2给出了不同工业领域使用的碳纤维品种、每公斤参考价格及目前与5年后估计的需求量。表3给出了不同工业领域每公斤碳纤维、预浸料和制品的参考价格。 表2给出了碳纤维在不同工业领域的应用都有不同程度的增长空间,当然目前除军机和部分民用低端产品使用国产碳纤维外,绝大部分都是国外碳纤维厂商和台丽的天下,VISTAS的风电产品在大规模增长,其碳纤维复合材料梁板生产基本上落入了国内厂商手中,包括澳盛和光威获得了很多大的订单,这对国内碳纤维复合材料制品厂家是利好的消息,但基本上和国产碳纤维生产厂家无关。 4、碳纤维企业的出路 鉴于目前国内碳纤维企业生产碳纤维的成本普遍都高于140元/kg,不亏本经营的唯一出路是成为航空航天行业的供应商,这也是本世纪初众多投资商投资碳纤维企业的初衷。由于成为航空航天产品供应商的门槛、需求量的限制以及进行型号鉴定的机遇,只有少数(2~3家)企业有幸进入了供应商的行列。对于后起的碳纤维生产企业已经失去了这一机会,这些企业将何去何从是本文讨论的重点。从表3列出的碳纤维、预浸料及制品的价格来看,有3条出路: 1) 对碳纤维进一步加工,以织物与预浸料出售,提高其价值,这也是像台丽这样的企业所走的道路。这条道路其实也很艰辛,台丽的产品性能与价格基本上是业界的标杆,并已占据了现有的国内市场,要想从中分一杯羹,只能打价格战。 2) 制成制品,提高其价值。对于目前消耗一万多吨的国内民品市场,已经有众多的碳纤维复合材料制品生产企业,碳纤维生产企业用性能逊于国外的纤维采用类同的设计与制造工艺生产出的制品与它们竞争,只能是以卵击石。钱云宝先生经常说:“大家都能做的我不做”,大概就是这个道理。 3) 开辟新的碳纤维复合材料应用领域,风电叶片是目前增长最快的应用领域,由于梁板拉挤成型的出现,碳纤维用量急剧增加,但目前这一技术是由VESTAS采用台丽的湿法大丝束碳纤维(III类生产线)开发的,而且产品附加值比较低(原材料成本占比近50%)其他碳纤维企业如果要进入这一领域,只能购买台丽或其他国外的碳纤维进行加工,结果碳纤维用量的增加基本上与国产碳纤维无关,也就与国产碳纤维产业化无关。据说有人正在利用国产湿法大丝束碳纤维研发风电叶片用梁板,如果研发成功,确实是国产碳纤维产业化的一个机会。 4) 对国内碳纤维生产企业最后的机会只能是尚未出现定型产品,但未来可能会大量使用碳纤维的工业领域。表2中列出了压力容器(包括氢燃料储气罐)、轨交和汽车领域以及其他有轻量化需求的应用领域,这些领域的应用前景已经明朗,由于成本和其他一些因素,尚未出现被市场接受的“买得起复合材料产品”。 国外对这些领域正在进行攻关,国内碳纤维企业如何参与?指望国外用户采用国产碳纤维进行攻关只能是痴心妄想,一旦国外攻关成功(就像VESTAS在风电叶片领域的攻关),这些领域的碳纤维复合材料制品又将是国外碳纤维的天下,国内碳纤维复合材料制品生产厂商再一次会成为这些领域碳纤维复合材料制品的加工商,我们还会欢呼“碳纤维的春天到了”。一旦有什么风吹草动,国外把碳纤维供应掐断,会不会出现类似“芯片之痛”的“碳纤维之痛”呢?我们的大飞机、轨交车辆、新能源汽车等等用什么来生产呢? 5、国产碳纤维不能用于制造高端产品吗? 碳纤维生产企业的老总说:我们的精力必须且只能关注如何提高碳纤维的质量和降低生产成本,以便使国产碳纤维在性能和生产成本方面优于国外碳纤维,能成功将它们替代,愿望是好的,确实是努力方向,但现实是我们能等到那一天吗?国内众多碳纤维企业已作出了多年努力,虽然有少数企业可以把T300-3k和6k级碳纤维的性能做到基本满足军机的要求,实现批量化生产,但T300-12k级碳纤维始终没有达到台丽的水平,更何况东丽的水平。可见碳纤维的生产技术是如此复杂,即使实现了,国产碳纤维也只能与国外碳纤维打价格战,结果将是苦涩的。国产碳纤维得不到高端应用,只能长期亏本生产和销售,这样的状态是否能实现碳纤维生产企业老总的预期呢? 如上所述,国产碳纤维实现产业化的机会只能是把“蛋糕”做大,通过扩大碳纤维的应用范围,增加碳纤维用量来实现。方向就是进入有光明前景,且尚未开发出“买得起的复合材料制品”的高端应用领域(即有迫切轻量化需求的工业领域)。目前国内外都在关注这些领域,并正在开发攻关。要知道这些用户在开发时通常都愿选用质量稳定、价格适中的国外碳纤维,国产碳纤维不在它们的考虑范围内。如果国产碳纤维生产厂家只关注修炼“提高质量和降低成本”的内功,不积极参与开发,产业化将会越来越远。国产碳纤维生产企业必须主动用自己生产的碳纤维来研发出高端应用“买得起的复合材料产品”,通这些产品的批量化生产,来实现自己生产的碳纤维的大量销售。要知道高端产品的成本构成中原材料成本通常只占20%,原材料价格略高一些在自己开发的产品中是可以接受的。只要开发出的产品被市场接受,并形成批量生产,就可以在生产和使用过程中同时实现碳纤维的质量提高和成本降低。当然这条道路异常艰难,也需要假以时日,但也只有这条路才能实现国产碳纤维的产业化。当然,在极度缺乏复合材料设计人才的当下,汇集这些人才与设备储备也是一项艰巨的工作。 很多碳纤维生产厂家都认为只有把自身的碳纤维质量提高到东丽的水平,才能应用到高端应用,从来也没有想过将现有水平的碳纤维用于开发高端产品。而恒神则打破了这一思维模式,在近年来就采用看似性能不被专家认可的、市值100元/kg的恒神碳纤维,开发出了一些价值几千元/kg被用户接受的高端轻量化制品,且通过了一系列严格的地面试验考核,即将批量生产。虽然这些制品体量不大,但证明了一点,即使性能低于国外碳纤维,价格高于国外碳纤维,同样可以设计和制造出性价比被用户接受的轻量化产品(早期东丽的碳纤维性能并不好,同样可以用于民机结构),从而可以实现恒神碳纤维的长期稳定销售。千里之行,始于硅步,大量恒神碳纤维的销售,就是依靠一个一个产品的开发,形成小规模稳定销售,积少成多,开发的产品多了,就形成了大规模的销售。用较低性能的碳纤维开发高端产品的范例是恒神与中车长客合作采用恒神生产的原材料(包括纤维、织物、自己开发的阻燃树脂等)和恒神创新的制造工艺开发出满足轨交行业设计规范(安全性)要求减重近30%的复合材料地铁车体,该车体结构已通过了严格的地面试验考核,即将上线运行。研发中采用的就是市值100元/kg的工业级恒神碳纤维。在地铁车体的开发过程中,恒神的全产业链技术团队基于丰富的航空航天应用(包括设计和制造工艺)的经验针对轨交车体的特殊行业要求,采用创新性设计与制造工艺实现的。该地铁车体虽然暂时还达不到“买得起”的水平,但通过碳纤维复合材料在地铁车体的应用实践取得了丰富的经验教训,在此基础上进一步研发,今后有可能开发出轨交领域“买得起的复合材料结构”,进而实现恒神碳纤维原材料的大量销售。 对于高端应用,为满足安全性要求对所用材料体系(包括纤维与树脂组合)要进行相当复杂的严格鉴定(通常要进行从材料到元件、组合件直至全尺寸结构件的积木式地面试验验证和在线运行考核),用户一般不会为了原材料价格的少量差异进行繁琐的等同性鉴定流程(保证性能与工艺的相容性),采用替代材料,这才是国产碳纤维生产企业需要全产业链的真谛。 碳纤维应用的高端产品的特点一定是对变形有严格要求,同时对减重也有迫切需求,特别是形状和受力复杂的杆板壳结构,这些是高端碳纤维复合材料制品的基本特点,这些产品的附加值比较高,通常原材料成本占比往往小于30%。 目前国内碳纤维生产企业已逐渐接受了钱云宝先生倡导的“全产业链”理念,很多企业也正在尝试做全产业链的碳纤维企业,但仔细了解这些企业,可以发现它们所建立的碳纤维生产线所生产的产品与其试图进入的工业领域对碳纤维的需求往往是不一致的,例如希望生产碳纤维电缆芯,却建立湿法小丝束的生产线;上游生产湿法小丝束碳纤维,下游生产湿法大丝束的风电叶片梁板;上游建设湿法大丝束生产线,下游却致力航天结构研发生产;上游生产干法小丝束,下游致力需要湿法大丝束的汽车制件;自己的下游不用上游生产的碳纤维,致使上游的碳纤维没有销路,下游产品开发所需碳纤维受人制约,这样的全产业链有何意义? 当然碳纤维生产企业在进入后端应用时,通过购买其他厂家的碳纤维生产复合材料制品来实现尽快盈利也是可以理解的,但国产碳纤维的产业化去哪了?这与“芯片之痛”遇到的现象有何区别?利用芯片的产品铺天盖地,而芯片的供应商全部来源于国外,“中兴事件”发生后国外断供,国内一片哀鸿。碳纤维复合材料企业是否也会出现类似的情景呢? 6、结论 国产碳纤维生产企业的生存之道,不能局限于修炼内功,致力于提高质量和降低成本,然后与国外碳纤维去拼价格,抢市场。必须用目前已基本能用的国产碳纤维去开拓工业领域应用的新领域,把“蛋糕”做大,在新开拓的应用市场找到国产碳纤维的生存空间,实现自己的价值,在实现价值的同时提升国产碳纤维的质量和降低成本。在寻找生存空间时,国产碳纤维企业必须发挥积极作用,不能寄希望于工业领域的新用户主动使用国产碳纤维,为此国产碳纤维企业具备上下游密切配合的全产业链是必备条件。