《BioRxiv,2月2日,(第3版更新)利用深度学习算法预测2019-nCoV病毒宿主和感染性》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangzx
  • 发布时间:2020-02-03
  • Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm

    Qian Guo, Mo Li, Chunhui Wang, Zhengcheng Fang, Peihong Wang, Jie Tan, Shufang Wu, Yonghong Xiao, View ORCID ProfileHuaiqiu Zhu

    doi: https://doi.org/10.1101/2020.01.21.914044

    This article is a preprint and has not been certified by peer review [what does this mean?].

    AbstractInfo/HistoryMetrics Preview PDF

    Abstract

    The recent outbreak of pneumonia in Wuhan, China caused by the 2019 Novel Coronavirus (2019-nCoV) emphasizes the importance of detecting novel viruses and predicting their risks of infecting people. In this report, we introduced the VHP (Virus Host Prediction) to predict the potential hosts of viruses using deep learning algorithm. Our prediction suggests that 2019-nCoV has close infectivity with other human coronaviruses, especially the severe acute respiratory syndrome coronavirus (SARS-CoV), Bat SARS-like Coronaviruses and the Middle East respiratory syndrome coronavirus (MERS-CoV). Based on our prediction, compared to the Coronaviruses infecting other vertebrates, bat coronaviruses are assigned with more similar infectivity patterns with 2019-nCoVs. Furthermore, by comparing the infectivity patterns of all viruses hosted on vertebrates, we found mink viruses show a closer infectivity pattern to 2019-nCov. These consequences of infectivity pattern analysis illustrate that bat and mink may be two candidate reservoirs of 2019-nCov.These results warn us to beware of 2019-nCoV and guide us to further explore the properties and reservoir of it.

    注. 本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.01.21.914044v3
相关报告
  • 《2月28日_人体感染病毒受体的预测》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-29
    • 信息名称:人体感染病毒受体的预测 1.时间:2020年2月28日 2.机构或团队:湖南大学医学病毒学湖南省重点实验室,中国医学科学院北京协和医学院基础医学研究所系统医学中心 3.事件概要: 湖南大学和中国医学科学院的科研人员在bioRxiv预印版平台发表论文“Prediction of receptorome for human-infecting virome”,利用随机森林模型预测人体感染病毒的受体。 文章指出,病毒受体是宿主细胞病毒感染的关键,目前,病毒受体的鉴定仍然具有挑战性。之前的研究表明,人类病毒受体蛋白具有一些独特的功能,包括高水平的N-糖基化、大量的相互作用对和高表达。在这里,科研人员建立了一个随机森林模型,根据人类病毒受体的独特特征和蛋白质序列,从人类细胞膜蛋白中识别人类病毒受体,并获得了公认的准确性,共729个人体细胞膜蛋白被预测为人感染病毒的受体组。结合随机森林模型与先前研究中预测的人类与病毒之间的蛋白质-蛋白质相互作用,进一步预测了693种人类感染病毒(如肠病毒、诺如病毒和西尼罗河病毒)的受体。最后,科研人员预测了2019-nCoV的候选替代受体,该研究将大大促进鉴定人类感染病毒的受体。 *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用. 4.附件: 原文链接: https://www.biorxiv.org/content/10.1101/2020.02.27.967885v1.full.pdf
  • 《BioRxiv,2月5日,(第2版更新)Genomic variance of the 2019-nCoV coronavirus》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-02-06
    • Genomic variance of the 2019-nCoV coronavirus Carmine Ceraolo, View ORCID ProfileFederico M Giorgi doi: https://doi.org/10.1101/2020.02.02.931162 Abstract There is rising global concern for the recently emerged novel Coronavirus (2019-nCov). Full genomic sequences have been released by the worldwide scientific community in the last few weeks in order to understand the evolutionary origin and molecular characteristics of this virus. Taking advantage of all the genomic information currently available, we constructed a phylogenetic tree including also representatives of other coronaviridae, such as Bat coronavirus (BCoV) and SARS. We confirm high sequence similarity (>99%) between all sequenced 2019-nCoVs genomes available, with the closest BCoV sequence sharing 96.2% sequence identity, confirming the notion of a zoonotic origin of 2019-nCoV. Despite the low heterogeneity of the 2019-nCoV genomes, we could identify at least two hyper-variable genomic hotspots, one of which is responsible for a Serine/Leucine variation in the viral ORF8-encoded protein. Finally, we perform a full proteomic comparison with other coronaviridae, identifying key aminoacidic differences to be considered for antiviral strategies deriving from previous anti-coronavirus approaches. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.