《盐河项目增加核电站份额以满足日益增长的需求》

  • 来源专题:钍基熔盐堆核能系统
  • 编译者: joeiki
  • 发布时间:2021-01-07
  • 以社区为基础的非营利性亚利桑那州公共电力公司盐河项目(SRP)表示,该公司正在将其在帕洛维德核电站的份额从17.5%提高到20%,以满足日益增长的客户需求,同时降低其总体碳强度,保护其免受价格飙升的影响。

相关报告
  • 《氢能试点项目最终可能会增加核电站的利润》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2020-07-22
    • 利用核能生产氢气可能不足以帮助核电站与可再生能源竞争。 美国中西部的核电站正在探索就地生产氢气的潜力,以降低成本并创造新的收入——这一举措也可能促进该地区不断增长的燃料电池产业。 能源部拨款将允许能源港(原第一能源解决方案)和Exelon使用他们各自核电厂的一部分电力,通过水解将水分离成氢和氧。氢可以用于各种各样的应用,包括燃料电池。燃料电池将氢和氧结合生成水,从而产生电能。 能源港在俄亥俄州橡树港的戴维斯-贝斯核电站的项目将花费大约1000万美元,据那里的机械工程师阿兰·沙瓦德说。他说,该公司与爱达荷国家实验室的项目合作伙伴还包括Xcel能源公司和亚利桑那公共服务公司。双方还计划在各自的发电厂建立试点项目。 Scheanwald最初计划在4月底的俄亥俄州燃料电池联盟2020年研讨会上谈论Davis-Besse项目。由于冠状病毒大流行,此次活动目前被重新安排在10月举行。 Exelon公司的发言人Lacey Dean说,Exelon公司也收到了类似的资助,在它的一个核电站建立了一个由核能产生氢气的项目。该项目输出的用途与Davis-Besse项目略有不同。 迪安说:“我们的目标是为内部核设施提供经济的无碳氢供应。”她解释说,由于其有利的传热特性,这种气体在涡轮发电机运行时有助于冷却发电机。她指出,氢气还有助于防止一些核反应堆组件的材料降解。 为什么要从核中提取氢呢? 将氢从水中分离出来的技术,叫做电解,早在19世纪就开始了。使用质子交换膜(PEM)的现代技术可以追溯到20世纪60年代。   然而,电解通常比从天然气中制造氢燃料更昂贵。这一过程产生的温室气体净排放量仍然比直接燃烧天然气产生的单位氢燃料电力要少。但是天然气的重整仍然会释放出一些二氧化碳。 用核能制造氢提供了避免温室气体排放的潜力,就像用太阳能或风能等可再生能源制造氢一样。相比之下,使用通用电网的电力运行电解将使用来自许多不同来源的电力。对于俄亥俄州和整个PJM电网地区来说,大部分能源来自化石燃料。   如果试点项目取得成功并最终扩大规模,它们还可能改善越来越缺乏竞争力的核电站的底线。   能源港戴维斯-贝斯电厂的Scheanwald说:“我认为这可以让我们继续运营这个电厂。”“它有助于推广我们已经生产的产品,我们将其提升到一个新的水平,用它来生产另一种产品。”   在戴维斯-贝斯的例子中,下一个水平可以让电厂从用于生产燃料的少量电力中赚取更多的钱,而不是在低需求时期将其输入电网。Scheanwald称,这对试点项目来说是最小的,因为该项目将使用远不到工厂产量的0.5%。   尽管如此,Scheanwald表示,"到目前为止,托莱多市内及周边行业对我们有很多兴趣。"未来扩大规模的项目最终可能会使用该厂产量的更大份额。   大多数核电站的产量相对不灵活,这意味着它们无法根据需求的变化轻易增加或减少产量。对于像戴维斯-贝斯这样的工厂,最好的运作方式是昼夜不停地产生大致相同的产量。然而,在不同时期,市场价格可能无法覆盖工厂的全部成本。   Scheanwald称:"我们并没有受到限制产量的挑战。"“我们面临的挑战更多的是电网电力输出的价格。”   与此同时,大多数核电站的固定成本较高,边际成本较低。高昂的固定成本,以及在改变产量方面相对缺乏灵活性,是核电站越来越难以与天然气和可再生能源发电竞争的原因之一。   因此,根据俄亥俄州燃料电池联盟的执行董事帕特·瓦伦蒂的说法,理论上,戴维斯-贝斯核电站制造氢气的边际成本可能非常低。瓦伦特说,如果这个项目最终扩大规模,它将最终使零排放氢燃料的生产“比目前市场上的价格便宜得多”。   与此同时,出售燃料的收入可能为核电站提供新的收入来源。实际上,利用一些多余的电能来制造氢燃料可以作为一种能量储存方式。但它的功能并不能平滑电力的间歇性生产,当氢被购买并用于燃料电池应用时,它将产生更多的收入和价值。 同样,就地制造氢气可以减少购买用于核电厂运行的天然气的费用,比如冷却和部件保护。   “如果成功了,我们可以立即降低内部氢气成本,”Exelon的Dean说。“接下来,我们可以探索在商业市场销售清洁氢的潜力,为我们的工厂提供新的收入来源。”   正在进行的挑战 虽然电解技术已经很成熟,但这些公司需要看看它在他们的设备中是如何工作的,以及它是否可以大规模管理。 他说:“我认为,我们希望在试点项目中证明的问题在于,如何将其与我们的日常核操作结合起来。”他指出,如果成功,能源港可能最终会在附近建立一个大规模的氢气处理厂。然而,目前还没有这方面的承诺。 虽然这样的收入来源会有所帮助,但从长远来看,扩大项目规模能否弥补各种核电站在竞争中面临的劣势,因为天然气发电厂的数量不断增加,可再生能源的成本不断下降。批评人士还指出,可再生能源技术可以更有效地减少温室气体排放。 在伊利诺斯州,Exelon的几家核电站已经得到了州政府的补贴。能源港的戴维斯-贝斯和佩里核电厂同样会因为去年众议院通过的第6号法案而获得补贴。自2014年以来,FirstEnergy一直在为戴维斯-贝斯(Davis-Besse)和某些燃煤电厂寻求救助。 虽然Energy Harbor在明年收费生效时仍将获得补贴,但该公司在5月8日将股票回购授权从5亿美元上调至8亿美元。除了推高股价,这一举措还可以为那些在FirstEnergy Solutions公司进入破产程序时押注众议院第6号法案获得通过的投资者提供快速回报。这些诉讼在今年早些时候结束。 戴维斯-贝斯为期两年的项目将在今年冬天开始实施,尽管目前尚不清楚疫情或其他因素是否会影响这个时间表。Exelon仍然需要为它的项目选择工厂。
  • 《IEA:能源需求持续增长能源系统深刻转型》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:wuk
    • 发布时间:2018-01-03
    • 11月14日,国际能源署(IEA)发布《世界能源展望2017》 报告指出,可再生能源成本大幅下滑、电气化快速发展、美国页岩革命、中国经济模式转变(工业主导型向服务主导型转变)和能源结构日益清洁化正在深刻改变着现有的能源系统和生产消费方式,将对全球能源格局带来深远影响。报告采用情景分析法对全球及主要地区到2040年石油、煤炭、天然气、电力和可再生能源等各行业进行了展望和深度分析,要点如下: (1)全球能源需求增速放缓,但依然保持增长态势 报告新政策情景显示,全球能源消费需求增速已经放缓,但到2040年仍将增长30%,相当于当前中国和印度的能源消费量之和。其中,印度是全球能源需求增长主要贡献力量,其消费增量将占全球增量近30%,到2040年时,印度在全球能源消费中的占比将从当前(2016年)的7%上升到 11% ,远低于其在全球人口中18%的预期占比。东南亚则是全球能源消费需求的另一个增长点,其能源需求增速将是中国的2倍。总体而言,亚洲发展中国家是未来能源需求增长的主要驱动力量,其能源消费增量将占到全球能源需求增量的三分之二,其余主要来自中东、非洲和拉丁美洲。 (2)可再生能源发展强劲,煤炭行业举步维艰 与过去二十五年相比,世界满足不断增长的能源需求的方式发生了巨大的变化,由过去的煤炭、石油转向了现今的天然气、可再生能源和能效。能效提升在减轻能源供应侧压力方面发挥了关键作用,如果其没有提升,则终端能源消耗量将增加一倍以上。可再生能源能够满足一次能源需求增长的40%,而其在电力行业中的爆炸式增长则标志着煤炭黄金时代已经过去。自2000年以来,燃煤发电装机容量增加了近900GW,但从现在到2040年其装机增量预计仅为400 GW,且大多数增量来自在建的电厂。在没有大规模部署碳捕集与封存设施的情况下,全球煤炭消费将与当前持平。尽管石油需求增速放缓,但到2040年仍将保持增长态势。到2040年,天然气消费量预计增长45%,工业需求成为最大的增长点。 到2040年,在世界众多国家可再生能源将成为成本最低的电力资源,届时其将占到全球电厂投资总额的三分之二。可再生能源的增长并不局限于电力部门。尽管基数较低,但可再生能源在供暖制冷和交通领域的使用量预计翻番。例如在巴西,可再生能源在终端能源消费中占比有望从当前的39%上升到2040年的45%,同期可再生能源在全球能源消费中的占比将从9%上升到16%。 (3)电气化大势所趋 在全球各种终端能源消耗形式中,电力正发展成为一股重要力量,到2040年时,电力将会占到终端能源消费增量的40%,与石油在过去 25 年中所占的份额相同。随着人们收入水平不断增加,数百万家庭将添置新的电器(智能家电的份额越来越大)和安装制冷系统,意味着电机数量日益增加。新政策情景显示,工业电机系统的电力消耗需求将占到全球电力需求增长的三分之一。到2040年,在中国仅仅用于制冷的电力需求就会超过现今日本电力需求总量。随着电力普及率的不断提高,全球每年将新增4500万电力消费者,但这依然不足以实现2030年电力普及目标。除了在传统应用领域取得增长,电力在供暖和交通运输领域的应用也取得显著进展,使其在终端能源消费中的占比提升到了近25%。受益于行业举措和政策支持(如英、法政府宣布从2040年起全面禁售汽油和柴油汽车),全球电动汽车保有量将从当前的200万辆增加到2040年的2.8亿辆。 为满足日益增长的用电需求,到2040年时,中国需要再新建一个与当今美国整个电力系统装机容量相当的电力基础设施,印度则需要增添一个与欧盟电力系统规模相当的电网设施。单靠可再生能源成本削减难以保障电力有效低碳化和稳定的电力供应,需要相应的政策来予以支持。而当前政策面临的主要挑战在于保障电网建设能够获得充足的投资,以及如何保证这些投资流向最符合电力系统发展需求的发电技术中去,以提高高比例可再生能源并网下电力系统的灵活性。数字技术在经济活动中的广泛应用,提升了运行效率,促进了电力系统的灵活运营,但也会带来潜在的安全隐患(如电力网络攻击)。 (4)中国能源革命对全球能源转型意义重大 中国社会经济发展已经迈入全新的阶段,能源政策加大了对电力、天然气和清洁高效数字化技术的关注。过去几十年,以重工业、基础设施建设和制成品出口为导向的经济发展模式让数亿人摆脱贫困(包括能源贫困),但也导致了中国形成了以煤炭为主的能源结构,留下了严重的环境问题,致使每年将近200万人因为空气污染而过早死亡。在此背景下,中国提出“能源革命”、“向污染宣战”、向服务型经济转型战略举措,推动能源行业朝着新的方向发展。中国能源消费需求增速明显放缓,从2000-2012年年均 8%下降到 2012 年以来的年均不足 2%,且该增速将在新政策情景中进一步放缓,到2040年时年均增速将降至 1%,主要的原因是中国政府推出了众多的能效政策法规。如果没有这些政策法规,到2040年时,中国终端能源消费将会比现有的预测高出 40%。但即便能效政策持续,到2040年中国人均能源消耗仍将会超过欧盟。 中国的能源政策将对全球能源转型起到决定性作用,并有望加速全球向清洁能源系统转型的步伐。中国的清洁能源发展、技术出口和对外投资规模是其成为全球低碳转型关键决定因素的背后驱动力。新政策情景下,全球新增的风能和太阳能光伏装机容量有三分之一在中国上线,全球超过40%电动汽车投资也发生在中国。到2040年,全球天然气增量的四分之一预计来自中国市场需求,届时中国的天然气进口量将达到2800亿立方米,成为仅次于欧盟的第二大天然气进口市场。到2030年,中国的石油进口量将达到1300万桶/天,超越美国成为全球最大的石油消费国。然而随着中国汽车和卡车能效提升,且2040年时将近四分之一的汽车被电动汽车取代,这意味着中国不再是全球石油消费需求的决定因素,相反印度石油需求将在2025年后大幅增长。到2040年,中国仍将领跑全球煤炭市场,但其已在2013年达到煤炭需求峰值,届时将下降近15%。 (5)页岩革命引领美国迈向能源出口之路 页岩革命使得美国油气产能大幅提升,这使得美国油气产量比任何其他国家产量都高出50%的水平。美国已经是天然气净出口国,且将在2020年左右成为石油净出口国。从2010到2025年,预计美国致密油产量会增加800万桶/天,这是石油市场发展历史上单个国家石油增产持续时期最长值。自 2008 年后的15年间,美国页岩气产量预计增加6300亿立方米,从而轻松打破以往的天然气产量记录。这种大规模的出口扩张已经北美地区产生了广泛的影响,掀起了石化行业和其他能源密集型产业投资热潮,重塑着国际能源贸易秩序,挑战现有的能源供应国和商业模式。到21世纪20年代中期时,美国将会成为世界上最大的液化天然气(LNG)出口国,几年之后会成为石油净出口国(但仍是重质原油主要进口国,主要出口产品为轻质原油和精炼产品)。若将加拿大和墨西哥的额外供应量考虑在内,北美地区将会成为全球原油供应增量最大来源。到2040年,亚洲原油进口量大幅增加到900万桶/天,届时全球70%的石油贸易流向都将指向亚洲。 (6)电动汽车蓬勃发展但石油时代远未结束 到2025年,美国石油产量将占到全球石油供应增量的80%,从而维持近期石油价格下行态势,使得消费者暂时还无法找到停止使用石油的理由。新政策情景显示,到21世纪20年代中期,石油需求仍将保持强劲增长态势,但之后将显著放缓,原因是更高的燃油效率和替代燃料使用降低了汽车的石油使用量。其他行业对石油强劲的需求会促使石油消费保持增长态势,到2040年全球石油需求预计将达到日均1.05亿桶。石油化工行业是石油消费增长最大驱动因素,紧随其后的是卡车货运、航运和船运行业。一旦美国致密油产量在21世纪20年代后期达到峰值,那非欧佩克石油的整体产能则会回落,市场供需平衡就会越来越依赖中东。到2040年仍需要大规模的投资来开发6700亿桶的新石油资源,主要目的是弥补现有油田产量下降产生的供应短缺,而不是满足需求的增长。随着石油供应市场趋紧,石油公司必须转向开发条件更为复杂的新油田项目,而这势必给成本和价格带来持续的上行压力。 美国致密油更大的上涨空间和电动汽车快速发展步伐将会迫使油价在未来很长一段时间内继续保持在低位。在低油价情景中,报告预计美国致密油资源会翻番,达到2000多亿桶,大幅提高美国的供应量,而更广泛的数字技术应用则有助于遏制上游成本增长。额外的政策和基础设施支持将会加速电动汽车在全球范围内部署扩张,到2040年预计保有量将达到近9亿辆。但主要产油地区能够经受得住油气利润下滑的挑战,这足以使价格在2040年时保持在50-70美元/桶的范围内。然而,上述的情况也难以扭转目前石油消费的主流趋势。尽管客车市场正在快速转型,但想要让全球石油需求见顶则需要在其他行业采取更强有力的政策措施。否则,在低油价环境下,消费者几乎没有任何经济动力来放弃石油使用。与此同时,石油需求预计增长强劲(至少在短期内),但包括2017年在内石油新项目已经连续三年呈现投资疲软态势,而这极有可能在21世纪20年代带来新增供应短缺风险。 (7)液化天然气正在塑造全球天然气市场新秩序 新政策情景下,到2040年天然气将占到全球能源需求增量的四分之一,成为继石油后的全球第二大燃料。在中东等资源丰富的地区,扩大天然气使用相对比较简单,特别是在可以替代石油的情况下。在美国,即使没有出台限制煤炭使用的国家政策,到2040年天然气发电都将在电力生产中占有很大的份额。但预计全球天然气需求增量的80%来自发展中国家(如中国、印度和其他亚洲国家),这些国家的大部分天然气依赖进口,且基础设施往往不够完善。这反映了天然气采用非常契合上述国家的政策重心,因为天然气可以用于供暖、发电和交通运输燃料,但比其他化石燃料产生的二氧化碳和污染物排放量要少,有助于解决空气污染问题。但天然气面临的竞争格局是异常激烈的,不仅仅是煤炭,还包括可再生能源,因为在一些国家,到21世纪20年代中期可再生能源成为比天然气更便宜的电力资源,推动燃气发电厂从基荷电厂演变成调峰电厂。此外,能效政策也会在一定程度上限制天然气使用:到2040年,尽管天然气发电量会增加一半以上,但由于电厂效率提升,电力行业的天然气使用量仅会增长三分之一。 美国液化天然气(LNG)出口正在加速全球天然气市场转型,催生了天然气市场新秩序的建立,即形成一个灵活性更大、流动性更强、全球化程度更高的新市场。而如何在渡过当前供应充足和低价格时期后,确保天然气依然廉价和安全,对于其未来的长期发展至关重要。到2040年,LNG将占到长途天然气贸易增长的近90%:除了少数例外(如俄罗斯与中国之间开辟的新天然气管道),各大新建管道将展开激烈竞争。天然气供应也将变得更加多元化:到2040年,全球LNG工厂数量将会翻一番,主要新增工厂来自美国和澳大利亚,其次是俄罗斯、卡塔尔、莫桑比克和加拿大。价格形成越来越依赖于不同天然气来源之间的竞争,而不是依赖石油指数。由于目的地选择灵活性,定价以配送枢纽为基础,有现货可供选择,使得美国的LNG成为了全球天然气市场变革的潜在催化剂。尽管变革步伐和方向上的不确定性会阻碍新投资进入,且在21世纪20年代存在天然气市场硬着陆的风险,但天然气新秩序建立有助于保障天然气安全。从长远来看,规模更大和流动性更强的LNG市场可以抵消能源系统其他环节灵活性降低带来的问题(例如,由于燃煤电厂退役,一些国家的燃料转换能力会降低)。到2040年,预计主要LNG进口国家/地区需要10天左右的时间才能把进口水平提高10%,比当前的欧洲、日本和韩国所需要的时间少一周。 (8)能源普及、污染控制和减排目标尚未实现 当前电力普及仍未实现,而扩大清洁烹饪设施的使用范围更具挑战。但积极迹象已经显现:自2012年以来,每年新增1亿多人获得电力供应,而2000到 2012年这一数值仅为6000万。印度和印度尼西亚的进步尤为显着,且在2014年撒哈拉以南非洲地区电气化普及率增幅首次超过人口增幅。尽管发展势头良好,但在新政策情景中,到2030年仍将有约6.75亿人(其中90%在撒哈拉以南非洲地区,当前是11亿)无法获得电力服务(当前是11亿),23亿人继续依赖生物质、煤炭和煤油进行烹饪(当前是28亿)。这些非清洁燃料的使用过程产生的空气污染每年导致280万人过早死亡。 政策对空气质量的关注度不断提高,报告预计全球所有主要污染物排放量会有所下降,但其对健康的影响依然严重。许多工业化社会的老龄化人口变得更容易受到空气污染的影响,城市化也会增加与交通污染物接触几率。尽管污染控制技术得到了更广泛的应用,并且能效提升减少了其他污染物的排放,但在新政策情景下,到2040年,室外空气污染造成的全球过早死亡人数依旧会从现在的300万人增加到400万人。 尽管近两年能源相关的二氧化碳排放处于稳定状态,但在新政策情景下,到2040年排放仍将有所增加。虽然目前取得的减排成果远不足以解决气候变化带来的严重问题,但还是起到了一定积极作用。新政策情景下,2040年的碳排放量将比去年报告预计值少6亿吨(去年是363亿吨,今年是357亿吨)。到2030年,中国的碳排放将达到峰值(92亿吨,略高于当前水平),随后开始下降。到2040年,尽管全球GDP将上涨125%、电力需求将增长60%,但电力相关的碳排放仅会小幅增加5%。然而,其他行业无法跟上电力部门的变化速度:交通运输行业产生的碳排放将在2040年赶上燃煤发电厂,工业碳排放也将大幅增加20%。 (9)采用综合方法缩小与可持续发展目标的差距 可持续发展情景提供了一个综合方法,以实现一系列对于可持续经济发展至关重要的能源相关目标:气候稳定、空气清新、现代能源服务广泛普及和能源安全风险的降低。实现上述目标的关键是及早达到二氧化碳排放峰值,随后迅速下降,与《巴黎协定》保持一致。 在可持续发展情景中,低碳能源在2040年的能源结构中份额将翻番,达到40%,各种提升能效方法被采用,煤炭需求下滑,此后不久石油消费量也将达到峰值。到2040年,电力行业基本实现低碳化,主要依靠可再生能源(贡献超过60%)、核能(15%)以及碳捕获和封存(6%),且这一技术在减少工业部门排放方面可以发挥同等重要的作用。电动汽车成为主流,但运输行业的脱碳还需要更为严格的效率措施,特别是公路货运。在这种情景下,能够实现或者超越可持续发展议程中确定的2030年可再生能源和能效目标;可再生能源和能效是推动低碳转型、减少污染物排放的关键机制。要想获得经济高效的结果,就要充分考虑可再生能源和能效之间的相互协调、统一政策和市场框架——尤其是在居民生活领域。将高效电器与分布式可再生能源相结合,从而在扩大电力普及和清洁炊事方面发挥更重要作用,特别是在电网难以覆盖的农村地区和偏远山区。 (11)天然气有助于能源系统转型 随着石油和煤炭需求回落以及可再生能源的强劲增长,天然气成为可持续发展情景中全球最大的单一燃料。确保天然气利用带来清新气候效益取决于可靠的行动,以尽量减少甲烷泄漏到大气中。在可持续发展情景中,到2030年天然气消费量将增长近20%,到2040年仍将维持在这一水平。在这种情况下,天然气的贡献在不同地区、不同部门之间差异很大。在严重依赖煤炭的能源系统(如中国和印度),在缺乏可再生能源使用的情况下(特别是在一些工业部门),或者在整合高比例可再生能源时需要保持电力季节性灵活性的情况下,天然气将发挥关键作用。加强行动力度,解决石油和天然气价值链上的甲烷泄漏是提升天然气环保形象的关键所在:这些排放量不仅是唯一的人为甲烷排放,且减少这些排放的花销是最低的。IEA首次对全球每年减少约7600万吨甲烷排放量的成本进行了分析,结果表明,这些排放量的40%-50%可以在没有净增成本的情况下得到削减,因为所捕获的甲烷价值可以抵消实施减排措施的费用。上述的措施在新政策情景中对限制全球气候升温的影响与关闭中国燃煤电厂的效果相当。 (12)在政策指引下,投资有助于书写能源未来新篇章 全球能源系统大规模转型正在深刻影响能源未来投资前景。在新政策情景中,电力投资占到能源供应总投资的近一半,在可持续发展情景中,则占到近三分之二,比近年来占比 40%的平均水平会有上升。在新政策情景中,在能源供应侧和终端消费的投资累计将会达到 60 万亿美元;在可持续发展情景中则会达到 69 万亿美元,清洁能源技术和能效的投资占比都会不断增加。但是油气上游投资仍然是安全能源系统的主要组成部分,即便是在可持续发展情景中的碳约束条件下也是如此。保持正确的定价信号和政策框架包括逐步取消造成化石燃料浪费性消费的补贴政策。与社区、市政和私营部门倡议一样,精心设计的政策仍是追求更加美好能源未来的必要条件。