《低维纳米材料可伸缩超级电容器的研究进展》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-12-03
  • 超级电容器(SCs)由于其长期耐用性、电化学稳定性、结构简单、功率密度特别高,且在能量密度和循环寿命参数方面没有太大的妥协,在移动储能技术方面显示出巨大的潜力。因此,可伸缩SC设备已被纳入各种新兴的电子应用领域,从可穿戴电子纺织品到微型机器人,再到集成能源系统。本文综述了近年来聚吡咯、碳纳米管、石墨烯等低维纳米材料支持的可拉伸SCs的研究进展。首先,讨论了可伸缩超级电容器的三大类:双层超级电容器、伪超级电容器和混合超级电容器。介绍了低维(0D、1D、2D)纳米材料可拉伸电极的研究进展。其次,着重介绍了可拉伸器件的设计策略,包括波形设计、线形设计、纺织形状设计、基里格美形状设计、折纸形状设计和蛇形桥岛设计,旨在提高实际应用中可能遇到的复杂可拉伸条件下的电化学性能。最后,讨论了可伸缩SC开发与制造领域的最新发展、面临的主要挑战和展望。

    ——文章发布于2018年11月19日

相关报告
  • 《可伸缩的垂直石墨烯纳米板可用于柔性超电容器应用》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-09-15
    • 垂直石墨烯纳米材料(VGN)是下一代电子设备应用的首选材料。电子工业对基于vgn柔性设备的需求不断增长,限制了VGN的生长温度。通过采用一种有效的策略将生长良好的VGN转移到任意的柔性基板上,从而克服了VGN在柔性基板上的直接生长所带来的困难。在目前的研究中,我们报告了一种廉价且可扩展的技术,用于在不破坏其形态、结构和特性的情况下,将VGN的聚合物转移到任意的基板上。在转移后,通过扫描电子显微镜、Raman光谱、x射线光电子能谱和四探针电阻法分别分析了形态学、化学结构和电学性质。从水接触角度测量了润湿特性。观察结果表明:形态、表面化学、结构和电子性质的保留。此外,还研究了基于vgn零和电流无约束的柔性对称超电容器装置的存储容量。一种极低的670/A和卓越的超级电容,在1万次循环之后,有86%的保留率,显示了制造柔性纳米电子设备的无损害的VGN传输方法的前景。 ——文章发布于2017年9月13日
  • 《研究找到纳米材料与肿瘤转移相关的信号通路》

    • 来源专题:科技大数据监测服务平台
    • 编译者:zhoujie
    • 发布时间:2019-07-09
    • 研究找到纳米材料与肿瘤转移相关的信号通路。 多壁碳纳米管在肺部的长期沉积可促进原位乳腺肿瘤血管生成,乳腺肿瘤细胞浸润能力。 研究团队供图 碳纳米管(CNT)是重要的一维纳米材料,应用越来越广泛,其使用对健康的影响也引发关注,但关注材料对机体的系统性影响的研究寥寥,关注对肿瘤转移影响的研究就更少了。 国家纳米科学中心陈春英课题组与中国科学技术大学生命学院朱涛课题组展开合作,特别关注CNT的生物学效应及其机制。日前,双方的研究获得新进展,他们发现CNT单次肺部暴露后,影响除肺部外的远端器官或组织的肿瘤(乳腺癌)的发生发展,CNT呼吸暴露后的延迟毒性可导致原位乳腺肿瘤的多发性转移。这是首次关于CNT长期呼吸暴露对除肺部外的远端器官或组织的肿瘤发生发展影响的报道。近日,相关研究结果在线发表于《自然—纳米材料》杂志。 CNT由生产走向生活 CNT,是由单层或多层石墨片卷曲而成的无缝纳米级管。由于其优良的导电性、场发射性能、大面积定向生长等特性,在电容器、织物、天线、建筑材料等领域展示出巨大的应用潜能。 已有研究发现,CNT呼吸暴露可引起实验动物肺部炎症和纤维化反应,出现局部肉芽肿和间质瘤的风险大大提高。因此,工业领域要求CNT的制造和应用必须要符合健康和安全的标准。2010年中国颁布了MWCNT表征和操作的国家标准。2011年,美国国家标准和技术局(NIST)制定了SWCNT标准物质;同年,国际标准化组织(ISO)和国际电工技术委员会(IEC)颁布了“碳纳米管中金属含量的绝对定量分析方法”。此后,电气与电子工程师协会(IEEE)制定了在洁净室内CNT加工标准。 “除了职业人群,其实已经有越来越多的公众也受到了CNT暴露的影响。”该论文通讯作者陈春英表示,国外文献发现,除了生产工作场所中的CNT,在巴黎、美国等地的空气样本中,尤其是“9·11事件”现场,均检测到CNT。CNT呼吸暴露离公众越来越近,公众接触到CNT的机会越来越多。 “然而迄今为止,CNT呼吸暴露多局限于肺部或心血管系统病变,而缺乏对全身系统影响和长期健康效应的研究。”该论文通讯作者朱涛强调。 可定向促进癌症转移 尽管关于CNT暴露的危害猜想很多,但不同于发病概率相对较高的职业暴露——二氧化硅、石棉暴露导致的矽肺、石棉肺,CNT导致的临床病例尚无报道。 为了研究CNT对肿瘤发生发展的影响,研究人员选择小鼠模型,单次肺部暴露CNT。观察发现,小鼠肺部的CNT可引起局部微环境改变——局部炎症和纤维化,这显著增强了乳腺肿瘤细胞侵入临近血管和周边组织的能力,促进小鼠肿瘤组织内血管生成。“这意味着,小鼠乳腺肿瘤细胞更容易向发生炎症的肺部转移,甚至进一步形成多器官转移。”陈春英表示。 分子水平的研究发现,CNT在肺部长期蓄积,刺激肺成纤维细胞和巨噬细胞分泌的VEGFA经血液循环到达乳腺肿瘤,直接促进肿瘤血管生成;此外,上调肿瘤细胞内源性VEGFA与COX-2的表达,从而启动VEGFA-COX-2的正反馈通路,使乳腺组织内血管生成持续增强,为肿瘤细胞的转移提供了“丰富的营养”和“肥沃的土壤”。 “也就是说,CNT暴露在不同组织器官形成的炎症和纤维化,为癌症转移提供了转移前和转移后的微环境,可‘定向’促进肿瘤细胞转移生长。”朱涛告诉《中国科学报》。 职业防护迫在眉睫 乳腺癌是一种常见肿瘤,患病人数逐年增加。国家癌症中心地数据显示,乳腺癌发病率位列女性恶性肿瘤之首,每年新增病例超30万。 英国伯明翰大学教授Iseult Lynch评价说,该研究提供了一个重大的机会,通过探索纳米材料与肿瘤转移相关的信号通路,可以促进对临床治疗干预方案的发展。 该研究还为纳米材料呼吸暴露的毒理学研究提供了启示。产品安全始终是一个国家能否安全发展的命脉。包括中国在内的许多国家正积极开展纳米材料生物安全性的研究,把纳米生物环境健康效应以及职业卫生防护等问题列在纳米科技发展战略的重要位置,以促进纳米技术更好的安全应用和可持续发展。 陈春英介绍,该研究系统、深入地研究了典型纳米材料长期低剂量暴露的生物安全性和毒理学机制。不但让人类意识到,生产场所的职业防护迫在眉睫,同时对普通人群暴露的健康效应研究也具有现实意义。