《化学所在理论计算预测双核铁酶活性中间体结构 和相关反应机制方面取得系列进展》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-03-30
  • 一氧化氮分子(NO)和氧分子(O2),是自然界中最重要的两种双原子自由基分子。在生物体内,NO分子是重要的信号分子,在平滑肌血管舒张、神经信号传递、血小板解聚、微生物感染免疫反应等方面,发挥着重要的生理作用。在自然界生物体中广泛存在着双核铁酶,其活性中心含有两个铁位点。双核铁酶不仅能参与O2分子的活化,而且可以活化NO分子。黄素双核铁蛋白(FDP)就是活化NO的双核铁酶(图1),并使其还原为N2O。人体免疫系统为了对抗微生物和病菌,可以产生具有杀灭微生物和病菌功能的高浓度NO,而作为对抗,致病菌所产生的黄素双核铁蛋白,可催化还原NO,从而导致感染的发生。因此,研究黄素双核铁蛋白催化NO还原反应的机制,对控制微生物感染具有重要意义。

      在国家自然科学基金委和中国科学院化学研究所理论计算化学平台项目的支持下,化学所光化学重点实验室研究员陈辉团队,在理论计算预测双核铁酶活性中间体结构及其反应机制研究方面取得系列进展。双核铁酶活化O2/NO的活性中间体结构,是揭示其自由基小分子活化机制的钥匙。然而,由于这些瞬态中间体的高活性和不稳定性,用传统的X-ray单晶衍射方法获取其结构是非常困难的。因此,如何通过其它方法预测双核铁酶含O2/NO瞬态活性中间体的结构,成为当前制约其O2/NO活化机制和酶催化反应机制研究的瓶颈问题。在前期工作中,针对这一难题,陈辉团队发展了结合57Fe穆斯堡尔谱模拟的多尺度QM/MM方法,发现理论计算模拟可以给出中间体的结构信息,并成功运用于双铁芳胺加氧酶AurF和CmlI (J. Am. Chem. Soc. 2017, 139, 13038-13046),以及蓝藻醛去甲酰化加氧酶cADO (J. Phys. Chem. Lett. 2016, 7, 4427-4432)的含氧瞬态活性中间体结构预测和机制研究中。然而,对于含有NO的双核铁酶瞬态活性中间体,该方法的有效性还有待确定。

      最近,针对黄素双核铁蛋白Tm FDP,利用多尺度QM/MM模拟结合57Fe穆斯堡尔谱模拟,陈辉团队首次揭示了黄素双核铁蛋白中关键的双亚硝基中间体的第二配位层效应,及其对NO还原的重要影响(图2),成功解决了领域中两个重要的机制难题。该工作有三个重要发现:(1)从双亚硝基中间体出发的N-N直接偶联,是Tm FDP中NO还原更合理的第一步反应机制;(2) Tm FDP中酪氨酸残基Tyr197的第二配位层效应,是一种对NO还原反应有特定选择性的稳定化作用;(3)NO还原过程中外部电子的注入,并不会对提高反应速率有帮助。该工作表明,QM/MM 57Fe穆斯堡尔谱模拟不仅对O2活化瞬态中间体结构,而且对NO分子活化瞬态中间体结构,不仅对第一配位层结构,而且对第二配位层结构,都能给出有用的信息,这为这种理论计算模拟方法在双核铁酶体系中更广泛的应用,奠定了基础。相关结果发表于Angew. Chem. Int. Ed. 2019, 58, 3795-3799。

相关报告
  • 《化学所在RNA表观遗传修饰的化学调控研究方面取得进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-03-30
    • RNA的表观遗传修饰是RNA调节基因表达的化学基础,利用新反应技术和新分子工具对RNA修饰进行精准调控对揭示RNA介导的遗传信息表达网络具有重要意义。然而由于RNA本身的不稳定性,使得在活细胞水平进行化学调控变得异常艰难。N6-甲基腺嘌呤(m6A)是真核生物最常见和最丰富的一种修饰,占甲基化修饰的80%以上。m6A修饰广泛参与调控mRNA的剪接、运输、稳定性和翻译效率等,并且与肥胖和肿瘤等多种生理功能异常及疾病相关。发展能够直接与m6A修饰进行相互作用的小分子化合物,以此实现在细胞水平上特异性识别m6A修饰并且进行选择性调控,更加精确地描绘RNA的修饰动态过程及其效应,具有十分重要的生物学意义和应用价值。   在国家自然科学基金委、科技部和中国科学院的支持下,中国科学院化学研究所分子识别与功能重点实验室研究员程靓团队长期从事该领域的基础研究,发展了一系列针对重要RNA表观遗传修饰的高选择、高灵敏、时空分辨的化学转化、荧光标记的原理和方法。他们前期报道了首例在蓝光照射下,维生素B2选择性促进核苷水平的m6A去甲基化研究(Chem. Commun. 2017, 53, 10734),为后续在细胞水平调控m6A奠定了基础。最近,他们和活体分析化学重点实验室研究员汪铭课题组合作,首次实现了化学小分子对RNA表观遗传修饰的直接干预。研究表明,核黄素单核苷酸(FMN)作为人工去甲基化酶,能够利用细胞中的氧气实现核苷、寡核苷酸以及活体细胞水平上的m6A去甲基化。FMN的作用方式是特异性地氧化N6-甲基取代的腺苷,而不是传统的作为甲基化酶的抑制剂或去甲基化酶的激动剂。即使在甲基化酶过表达的细胞中,FMN依然可以有效地下调m6A的表达水平,表明FMN有望作为新型的靶向m6A修饰的小分子抑制剂进行开发,对治疗由m6A过表达引起的生理疾病以及深入研究m6A的生物学功能提供了候选化合物。相关成果发表于《德国应用化学》
  • 《化学所在人体流动系统检测方面取得系列成果》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-01-10
    • 血液循环系统中存储了大量与人体健康相关的化学信息,对其高灵敏选择性的检测可为疾病诊疗或筛查提供重要的检测方法和技术支撑。血液循环系统是成分高度复杂的流动体系,不仅对检测方法的灵敏度和抗干扰能力提出更大的挑战,流体力学的引入也需要构建适用于流动体系的新方法和新材料,重新揭示疾病标志物与捕获界面的相互作用规律。   在国家自然科学基金等资助下,中国科学院化学研究所活体分析化学重点实验室研究员王铁课题组研究人员经过近5年的持续研究,在流动复杂体系的分析检测领域取得进展。   该研究组制备了一系列适用于流动状态复杂样品吸附、分析、检测的功能材料(Adv. Mater. 2018, 1801441; Anal. Chem. 2017, 89, 12054; Adv. Mater. 2016, 28, 8740; Adv. Funct. Mater. 2015, 25, 5159),实现细胞生理活动的监控(Anal. Chem. 2017, 89, 12843; Adv. Mater. 2016, 28, 9589)。构建了新颖的用于清除流动血液中病原菌的血液净化器(Nat. Commun. 2018,9,444),解决了因蛋白非特异吸附导致纳米材料对生物分子产生安全性威胁的问题(J. Am. Chem. Soc. 2018, 140, 14211),开创性地解决了气体与检测界面接触时间过短,作用力弱导致检测灵敏度低的问题(Adv. Mater. 2018, 30, 1702275; Anal. Chem. 2017, 89, 1416)。并应邀对该领域的前沿发展和未来趋势设计(Chem. Soc. Rev. 2017, 46, 1483-1509)撰写了综述。   最近,科研人员发现血液流经纳米粒子会在其表面产生剪切力,能诱导杨氏模量低的纳米粒子发生形变,抑制对蛋白的非特异性吸附,避免细胞对纳米材料的吞噬产生的副作用,显著提高纳米材料的生物相容性,相关成果发表在J. Am. Chem. Soc. 2018, 140, 14211上。   但过低的杨氏模量会降低对血液中病原菌的捕获效率。病原菌是引起各种严重感染性疾病的重要因素,如果是耐药性细菌引起的疾病目前临床并无有效的治疗手段。科研人员通过在透析器上修饰纤毛状的纳米线,通过精确调控杨氏模量发现,当纳米线接触到细菌时,纳米线的顶端立即卷起来,形成三维纳米捕手状的笼型结构,可以把在血液中捕获耐药性细菌的效率从10%提高到97%。研究成果发表在Nat. Commun. 2018, 9, 444,并被Nature Communications作为当周热点文章以Medical research: Nanoclaws snatch bacteria 为题进行推送,该研究引起广泛关注。