《褪黑素在人类乳腺癌细胞中具有“内-外”的纳米热疗法:一种潜在的癌症靶向治疗方法,其基础是基于融合纳米颗粒的纳米复合粒子。》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2017-10-16
  • 摘要目的:在广泛认识到褪黑素的肿瘤静态效应的基础上,目前的研究提出了一种可能的乳腺癌靶向治疗方法,该方法是基于融合的磁性纳米复合颗粒(mel张力-mnps)。

    方法:采用单一乳液溶剂萃取法和蒸发法,对其进行了合成。

    结果:根据细胞膜上的过量表达对褪黑素的催化转运,与无麦粒的纳米复合颗粒相比,mf-7细胞更容易被mcf-7细胞所接受,这表明了褪黑素分子的癌症靶向能力。感应加热可以通过暴露在不同的磁场内的癌细胞内的融合在不同的细胞内,从而达到“内外”的磁纳米热疗。除了证明这种纳米热疗对传统外生热疗法的细胞毒性作用外,更重要的是,在对磁性加热的反应中,可以极大地促进褪黑素的可持续性释放。基于mel张力-mnp的多通道治疗可导致细胞生存能力的显著下降,这表明褪黑素对纳米热疗的细胞毒性反应有潜在的影响。

    结论:本研究是第一个制备出精确的合成的多功能纳米复合粒子,并展示了乳腺癌靶向治疗的潜力。

    ——文章发布于2017年10月11日

相关报告
  • 《纳米颗粒的目标是早期乳腺癌转移》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-10-03
    • 尽管在癌症治疗方面取得了进展,但在癌症转移之后治疗癌症仍然是一个未得到满足的临床挑战。在本研究中,我们展示了100纳米脂质体的目标是三阴性的鼠乳腺癌转移。转移性乳腺癌是由b/c小鼠在试验中诱导的,通过对4T1细胞的尾静脉注射,或在移植了原发性肿瘤异种移植后自发进行的。为了追踪他们在体内的生物分布,脂质体被标记为多模态诊断制剂,包括用于全动物荧光成像的indocyanine green和rhodamine,用于磁共振成像(MRI)的gadolinium,以及用于定量的生物分布分析的europium。在转移过程中,脂质体的积累达到了24小时后的峰值,这与在原发性肿瘤中达到峰值的时间相似。对转移性组织的脂质体的效率比非脂质体的效率高了4.5倍。在转移性进展的早期阶段发现了脂质体,包括直径小于2毫米的转移病灶。令人惊讶的是,虽然纳米颗粒可以治疗乳腺癌的转移,但在转移前的位置上,它们也可能会被发现,在转移的前几天,通过核磁共振成像或组织学上的组织,可以看到癌细胞转移。这项研究强调了治疗转移性癌症的诊断和治疗纳米粒子的前景,甚至可能是为了防止转移性传播的发生,因为它是针对转移性的利基。 ——文章发布于2017年10月2日
  • 《纳米技术在癌症中的应用:脑瘤治疗的未来》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-05-09
    • 纳米医学是纳米技术和医学的交叉领域,随着研究人员发现越来越多的纳米材料和功能化纳米材料(通常是有机分子)与人体生物相容,纳米医学正在成为一个广泛发展的领域。 在这一领域,有大量的应用领域,其中之一是纳米颗粒为基础的治疗,可以摧毁癌症肿瘤。在所有不同的癌症治疗方法中,大脑可能是最具挑战性的一个,但研究人员现在正在寻找基于纳米技术的治疗方法,可以用来治疗脑瘤。 与其他器官相比,由于大脑的敏感性,治疗脑瘤是一项棘手的任务,而且患者的存活率在癌症患者中是最低的。在许多情况下,病人在最初诊断后预计只能活到14个月。 脑癌患者的主要原因之一,预后不佳是因为传统的化疗用于摧毁癌症难以通过血脑屏障,这意味着他们没有达到足够浓度的肿瘤是有效的(在许多情况下,并不是)。 这也带来了次要的问题,因为化疗药物会在体内循环,如果这些药物不能针对预期的肿瘤,就会对身体的其他部分造成伤害。近年来的主要解决方案之一是使用纳米颗粒,因为让纳米颗粒穿过血脑屏障已经取得了一些成功。这意味着纳米粒子作为纳米载体,现在已经成为比许多传统化疗更有效的治疗脑肿瘤的方法。 纳米粒子传递的学术发展 有很多方法可以将纳米颗粒送到大脑。例如,在2018年,伦敦帝国理工学院(Imperial College London)的研究人员成功地使表面带有DNA的金纳米粒子功能化,并使用超声波(低能量波)打开血脑屏障,使纳米粒子能够通过。这是通过制造声音微泡来实现的,这些微泡振动血液,导致血脑屏障暂时打开。 虽然这项研究更关注的是找到打开血脑屏障的方法,而不是治疗本身,但打开血脑屏障的能力非常重要,因为它是开发新疗法的关键障碍之一。在这项研究中使用的功能化纳米颗粒可以用来运输可以摧毁脑肿瘤的治疗药物。 该领域的研究旨在找到生物相容性和活性性能之间的平衡,而对于纳米颗粒来说,这些性能通常与纳米颗粒在其表面的功能化有关。 来自英国和新加坡的研究人员研究了可以添加到纳米颗粒表面的不同表面活性剂,发现与其他表面活性剂分子相比,含有聚乙二醇的表面活性剂更容易穿过血脑屏障。 此外,寻找更多的方法来跨越血脑屏障是学术研究的一个重要难题,因为已知的有效载荷可以被纳米颗粒携带到脑肿瘤中,而如何将它们带到那里一直是一个问题。这种方式的工作很重要,因为它可以找到穿过血脑屏障的方法,而不需要施加外部刺激。 最近的一项研究是2020年在中国进行的。研究人员功能化量子点与多个配对α-carboxyl和氨基酸组,这样纳米颗粒模拟大量氨基酸的结构。 这意味着纳米颗粒可以被一种名为LAT 1的受体分子识别,这种受体分子存在于肿瘤和血脑屏障中,但不存在于大多数健康的器官中。这使得量子点纳米颗粒能够穿透血脑屏障而不受外部刺激(因为它们会给人一种它们是营养物质的印象),并附着在肿瘤上。 这些特殊分子的临床应用还有很长的路要走,但研究表明,如果他们设计出针对血脑屏障上LAT 1受体的纳米颗粒,未来的治疗可能会更成功。 纳米粒子治疗脑肿瘤的商业发展 纳米颗粒不仅在学术界用于治疗脑瘤;它们可以在市场上买到,并被用来治疗脑瘤患者。Magforce是一家总部位于德国的公司,它使用一种由超顺磁性氧化铁纳米颗粒组成的铁磁流体来杀死癌细胞。 与许多其他纳米颗粒癌症治疗不同,氧化铁纳米颗粒不作为纳米载体。相反,它们会产生局部热量,杀死癌细胞。已经有许多学术研究以类似的方式开展工作,但Magforce是最早生产和商业化使用它们的公司之一。 这种治疗方法可用于多种肿瘤。它并不是针对脑瘤的,但是在临床应用中已经有了使用这些纳米颗粒治疗脑瘤的结果。 这种治疗方法是将磁性纳米颗粒定位在肿瘤附近,然后暴露在外加磁场中。磁场以每秒10万次的速度改变纳米颗粒的极性,从而产生局域热。这种热量被用来杀死癌细胞,随着时间的推移,杀死肿瘤。 未来治疗脑瘤的前景 与传统的化疗相比,纳米颗粒的应用为治疗脑肿瘤提供了更多的可能性。利用纳米技术对抗脑肿瘤的未来看起来很有希望,因为现在有学术和商业上的发展,有望确保脑瘤患者有更好的生存机会。 治疗脑瘤的研究相对来说还比较新颖,因此可能会出现更有效的治疗方法,提高脑癌患者的存活率。