《通用医疗人工智能的基础模型》

  • 来源专题:重大疾病防治
  • 编译者: 蒋君
  • 发布时间:2023-04-27
  • 高度灵活、可重复使用的人工智能(AI)模型的异常快速发展可能会在医学领域带来新的能力。我们提出了一种新的医学人工智能范式,我们称之为广义医学人工智能(GMAI)。GMAI模型将能够使用很少或根本不使用特定任务的标记数据来执行一系列不同的任务。GMAI通过在大型、多样化的数据集上进行自我监督,将灵活解释不同的医疗模式组合,包括来自成像、电子健康记录、实验室结果、基因组学、图表或医学文本的数据。模型反过来会产生富有表现力的输出,如自由文本解释、口头推荐或图像注释,以展示先进的医学推理能力。在这里,我们为GMAI确定了一组具有高影响力的潜在应用,并列出了实现这些应用所需的具体技术能力和培训数据集。我们预计,支持GMAI的应用程序将挑战当前监管和验证医学人工智能设备的策略,并将改变与大型医学数据集收集相关的做法。
  • 原文来源:https://www.nature.com/articles/s41586-023-05881-4
相关报告
  • 《医疗AI与GPT | 梳理全球医疗大模型》

    • 来源专题:数智化图书情报
    • 编译者:闫亚飞
    • 发布时间:2023-09-27
    • 一、国外医疗大模型 1、谷歌医疗大模型(Med-PaLM) 谷歌和DeepMind的科研人员在《自然》杂志上发表了一项研究,根据其研究结果,一组临床医生对谷歌和DeepMind团队的医疗大模型Med-PaLM回答的评分高达92.6%,与现实中人类临床医生的水平(92.9%)相当。 2、BioMedLM(PubMedGPT) 斯坦福基础模型研究中心(CRFM)和MosaicML联合开发了BioMedLM (PubMedGPT)模型,一种经训练可以解释生物医学语言的大型语言模型。CRFM使用MosaicML平台,根据PubMed的生物医学数据训练了2.7B 参数 GPT,在美国医疗执照考试 (USMLE)的医疗问答文本上取得了最先进的结果。在Pile数据集的 PubMed Abstracts 和 PubMed Central 部分上训练了 BioMedLM。该数据集包含约 50B 个标记,涵盖由美国国立卫生研究院策划的生物医学文献中的 1600 万篇摘要和 500 万篇全文文章。 3、GatorTron GatorTron是由佛罗里达大学开发的电子病历(EHR)大数据模型,从头开始开发了一个LLM(没有基于其他预训练模型),使用89亿个参数和来自电子健康记录的>900亿字的文本来改进5个临床自然语言处理任务,包括医疗问题回答和医疗关系提取。 虽然比Med-PaLM的模型小得多,但这是第一个由学术医疗机构开发的医学基础模型,而不是像谷歌、OpenAI或Meta这样的大型科技公司。 这个数据来源是从UF Health综合数据存储库(IDR)——UF Health系统的企业数据仓库中提取了来自247万名患者的总计2.9亿份临床笔记。这些笔记是在2011-2021年创建的,来自超过126个临床科室和约5千万次接触,涵盖了医疗环境,包括但不限于住院病人、门诊病人和急诊部门的访问。经过预处理和去识别,该语料库包括超过820亿个医疗词汇。 4、CLINICAL QA BIOGPT (JSL) John Snow Labs 长期以来一直是自然语言处理(NLP)工具和算法在医疗用例中的领先者。除了数据标记和提取之外,他们还拥有用于去标识化临床笔记和医疗数据的工具。JSL 最近宣布了一种基于 BioGPT(一个较旧、较小的医疗信息训练的大型语言模型)的LLM(BIOGPT (JSL) ),通过基于JSL数据和NLP工具的微调。该模型在患者去标识化、实体解析(如提取操作代码和医疗术语)以及临床摘要的准确性等领域可能表现更好,甚至可能优于ChatGPT。 https://nlp.johnsnowlabs.com/2023/04/12/biogpt_chat_jsl_en.html 5、ChatDoctor ChatDoctor:使用医学领域知识在大型语言模型LLaMA上进行微调的医疗大模型。 收集了 700 多种疾病及其对应的症状 + 所需医学检查 + 推荐的药物, 以此生成了 5k 次医患对话数据集。此外, 还从在线问答医疗咨询网站获得了 200k 条真实的医患对话数据集。 使用 205k 条医患对话数据集对 LLM 进行微调, 生成的模型在理解患者需求, 提供合理建议并在各种医疗相关领域提供帮助方面能力显著提高。 此外,为了提高模型的可信度,该项目还设计了一个基于Wikipedia和医疗领域数据库的知识大脑,它可以实时访问权威信息,并根据这些可靠信息回答患者的问,这对容错率较低的医疗领域至关重要。 实验表明,医生患者对话的微调模型在精度、召回率和F1方面超过ChatGPT。 https://www.yunxiangli.top/ChatDoctor/ 二、中文医疗大模型 1、DoctorGLM 基于 ChatGLM-6B的中文问诊模型 基于 ChatGLM-6B的中文问诊模型,通过中文医疗对话数据集进行微调,实现了包括lora、p-tuningv2等微调及部署。 Github地址:https://github.com/xionghonglin/DoctorGLM 2、BenTsao 开源了经过中文医学指令精调/指令微调(Instruct-tuning) 的LLaMA-7B模型。通过医学知识图谱和GPT3.5 API构建了中文医学指令数据集,并在此基础上对LLaMA进行了指令微调,提高了LLaMA在医疗领域的问答效果。 地址:https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese 3、BianQue 一个经过指令与多轮问询对话联合微调的医疗对话大模型,基于ClueAI/ChatYuan-large-v2作为底座,使用中文医疗问答指令与多轮问询对话混合数据集进行微调。 地址:https://github.com/scutcyr/BianQue 4、HuatuoGPT 开源了经过中文医学指令精调/指令微调(Instruct-tuning)的一个GPT-like模型 地址:https://github.com/FreedomIntelligence/HuatuoGPT 5、Med-ChatGLM 基于中文医学知识的ChatGLM模型微调,微调数据与BenTsao相同。 地址:https://github.com/SCIR-HI/Med-ChatGLM 6、QiZhenGPT 该项目利用启真医学知识库构建的中文医学指令数据集,并基于此在LLaMA-7B模型上进行指令精调,大幅提高了模型在中文医疗场景下效果,首先针对药品知识问答发布了评测数据集,后续计划优化疾病、手术、检验等方面的问答效果,并针对医患问答、病历自动生成等应用展开拓展。 地址:https://github.com/CMKRG/QiZhenGPT 7、ChatMed 该项目推出ChatMed系列中文医疗大规模语言模型,模型主干为LlaMA-7b并采用LoRA微调,具体包括ChatMed-Consult : 基于中文医疗在线问诊数据集ChatMed_Consult_Dataset的50w+在线问诊+ChatGPT回复作为训练集;ChatMed-TCM : 基于中医药指令数据集ChatMed_TCM_Dataset,以开源的中医药知识图谱为基础,采用以实体为中心的自指令方法(entity-centric self-instruct),调用ChatGPT得到2.6w+的围绕中医药的指令数据训练得到。 地址:https://github.com/michael-wzhu/ChatMed 8、XrayGLM,首个会看胸部X光片的中文多模态医学大模型 该项目为促进中文领域医学多模态大模型的研究发展,发布了XrayGLM数据集及模型,其在医学影像诊断和多轮交互对话上显示出了非凡的潜力。 地址:https://github.com/WangRongsheng/XrayGLM 三、国内产业界的医疗大模型 1、百度灵医大模型 2023年9月19日,百度正式发布国内首个“产业级”医疗大模型——灵医大模型。灵医大模型聚焦智能健康管家、智能医生助手、智能企业服务三大方向,为患者、医院、企业等提供AI原生应用。 灵医大模型能够结合自由文本秒级生成结构化病历,根据医患对话精准分析生成主诉、现病史等内容。此外,灵医大模型也是业内唯一支持多篇中英文文献同时解析的大模型,基于文献解析内容实现智能问答。在辅助诊疗方面,灵医大模型可实现通过多轮对话了解病人病情,实时辅助医生确诊疾病,推荐治疗方案,提升就诊全流程的效率和体验,并成为患者的24小时“健康管家”,提供智能客服服务。此外,灵医大模型还能为药企提供多项赋能,包括专业培训、医药信息支持等等。 2、京东京医千询 京东健康发布了“京医千询”医疗大模型,可快速完成在医疗健康领域各个场景的迁移和学习,实现产品和解决方案的全面AI化部署。 3、腾讯混元医疗大模型 腾讯混元大模型预训练用到的数据高达2万亿tokens,比不少模型高出一个量级。训练数据涵盖285万医学实体、1250万医学关系,覆盖98%医学知识的医学知识图谱和中英文医学文献。这些知识既对大量论文、百科全书、用药说明书中的知识进行了萃取,又纳入了腾讯医典中各个医学专家撰写的针对性的医学文章。所有知识来源都已经过验证,因而可为大模型输出的结果提供权威依据。 一方面来源于患者场景,如线上问诊、医学问答、导诊、预问诊;另一方面来源于医生场景,如医学考题、病历生成、出院小结、检查建议、诊断结果和用药建议。 4、医联MedGPT 预训练阶段使用了超过20亿的医学文本数据,微调训练阶段使?了800万条的高质量结构化临床诊疗数据,并投入超过100名医生参与人工反馈监督微调训练。 5、商汤 “大医”大模型 基于海量医学知识和临床数据打造了中文医疗语言大模型“大医”,可以提供导诊、健康咨询、辅助决策等多场景多轮会话能力。此外,商汤科技同样推出了医疗影像大模型、生信大模型等多种垂类基础模型群,覆盖CT、MRI、超声、内镜、病理、医学文本、生信数据等不同医疗数据模态。 6、云知声山海大模型 云知声将以山海大模型为基础,增强物联、医疗等行业能力,为客户提供更智能、更灵活的解决方案。在医疗场景,发布手术病历撰写助手、门诊病历生成系统、商保智能理赔系统三大医疗产品应用。 7、微脉CareGPT CareGPT 致力于在真实的医疗服务场景中充分发挥健康管理价值,实现预防、咨询、预约、康复的全周期智能化健康管理能力。目前参数规模为 70 亿,可支持医疗健康场景下的多模态输入和输出。 8、东软添翼医疗 医生通过自然语言与添翼交互,快速、精准地完成医疗报告与病历、医嘱开立;面向患者,添翼让问诊更便捷,成为患者全天私人专属医生,提供全面的诊后健康饮食、营养与运动建议等服务。添翼的多模态数据融合能力,也将为医院管理者提供对话式交互与数据洞察,简化数据利用,让医院管理更精细。 9、叮当健康HealthGPT 叮当HealthGPT可以作为AI健康助手,为用户提供全方位的健康相关问题解答和专业建议。无论用户对就医流程、疾病治疗、药品使用、检查结果解读感兴趣,还是关注疾病预防、养生保健、饮食营养、美容健身、家庭医疗护理、心理健康和压力管理,叮当HealthGPT都能满足用户的需求。 10、水木分子ChatDD 新一代对话式药物研发助手ChatDD 及全球首个千亿参数多模态生物医药对话大模型ChatDD-FM 100B,ChatDD (Chat Drug Discovery & Design) 基于大模型能力,则能够对多模态数据进行融合理解,与专家自然交互人机协作,将人类专家知识与大模型知识联结,具备问题理解、任务拆解、工具调用等能力,或有可能重新定义药物研发模式。 11、华为云盘古药物分子大模型 华为云盘古大模型已经深入金融、制造、政务、电力、煤矿、医疗、铁路等10多个行业,支撑400多个业务场景的AI应用落地。2021年发布的华为云盘古药物分子大模型,是由华为云联合中国科学院上海药物研究所共同训练而成的大模型,可以实现针对小分子药物全流程的人工智能辅助药物设计。实验验证结果表明,盘古药物分子大模型的成药性预测准确率比传统方式高20%,进而提升研发效率,让先导药的研发周期从数年缩短至一个月,同时降低70%的研发成本。 12、智云健康:ClouD GPT 依托大数据平台、机器学习平台、模型开发平台、模型训练平台等基础平台,智云健康开发出医疗行业模型ClouD GPT,已经落地在智云AI辅助诊断和AI药物、器械研发的医疗应用场景。 13、卫宁健康:WiNEX Copilot 卫宁健康已于2023年1月开展了医疗垂直领域的大语言模型WiNGPT的研发和训练工作,截至4月、6月和9月的模型训练参数量达到或将达到60亿、156亿、650亿,目前正在探索更多的医疗应用场景,计划于10月正式发布由GPT技术加持的新产品WiNEX Copilot。 14、创业慧康BSoftGPT BSoftGP将以API调用结合本地部署的方式聚合利用通用GPT模型,同时通过本地部署embedding向量数据库以及公司自有的领域知识库,通过医疗垂直领域的语言模型训练和微调逐步实现产品力,并向公司内外部的应用场景,比如在医疗服务和个人健康等场景中输出AI智能服务。 在临床医疗服务方面,BSoftGPT可以根据医生提供的病历信息和临床数据,自动化生成临床决策建议和治疗方案,从而辅助医生进行临床决策,提升现有的临床决策支持系统CDSS的智能化水平;在面向患者服务方面,BSoftGPT可以通过与患者进行自然语言交互,实现贯穿患者诊前诊中诊后全流程的智能导诊、管理。 15、科大讯飞:星火认知 基于星火认知大模型升级的讯飞医疗诊后康复管理平台,将专业的诊后管理和康复指导延伸到了院外。根据患者健康画像自动分析,平台可为患者智能生成个性化康复计划,并督促患者按计划执行。目前,讯飞诊后康复管理平台试点已取得显著效果:提高合作医院医生的管理效率10倍以上,患者康复过程中的随访率和咨询回复率达到100%,出院患者满意度达到98%以上。 16、中国科学院自动化研究所紫东太初 “紫东太初”定位为跨模态通用人工智能平台,于2021年正式发布。今年6月16日,紫东太初发布2.0版本,目前,“紫东太初”大模型已展现出广阔的产业应用前景,在神经外科手术导航、短视频内容摘要、法律咨询、医疗多模态鉴别诊断、交通图像研读等领域开始了一系列引领性、示范性应用。 在医疗领域,基于紫东太初大模型开放服务平台,实现数据智能标注、高效模型训练、模型灵活部署,实现骨科器械/耗材的自动识别和清点,实现智能化、精细化管理,效率相比传统方式提升了6倍,准确率高达97%以上。 17、深圳市大数据研究院&香港中文大学(深圳)华佗GPT 今年6月,华佗GPT的最新的内测版本在深圳发布。由深圳市大数据研究院和香港中文大学(深圳)联合研发的华佗GPT,使用一亿问答(50G)和10-20T医疗文本,是最大的医疗问答数据集。主要应用于医疗咨询和情感陪伴,包括患者培训、健康咨询、就医分诊等。 华佗GPT是通过融合ChatGPT生成的 “蒸馏数据”和真实世界医生回复的数据,训练并开源了一个新的医疗大模型。自动与人工评测结果显示,华佗GPT在单轮与多轮问诊场景都优于现有中文医疗人工智能模型和GPT-3.5,充分证明其处理复杂问诊对话的能力。下一步,华佗GPT将支持多模态输入。 18、北京智谱华章科技有限公司&北京中医药大学东方医院:基于“GLM-130B”的数字中医大模型 6月27日,北京市首批10个人工智能行业大模型应用案例发布,其中包括北京智谱华章科技有限公司和北京中医药大学东方医院共同开发的数字中医大模型示范应用。该项目项目选用了基于智谱华章高精度千亿中英双语稠密模型“GLM-130B”,面向中医领域名医经验挖掘整理需求,构建数字中医服务平台,探索高危肺结节人工智能临床诊疗和临床评价研究等解决方案,实现中医临床经验的智慧化复制新模式。项目已初步研发了医疗垂直领域的问答功能,支持对医疗、健康问题进行智能化知识问答;同时开发了根据症状生成中医处方,并提供处方主治症候医学解释等辅助诊疗功能。 19、哈尔滨工业大学:“本草”中文医学大模型(原名:华驼) 据今年5月报道,哈尔滨工业大学的研究团队训练出中文医学大模型,命名为“华驼”,后更名为“本草”。“本草”团队主要利用了中文医学知识图谱CMeKG和2023年关于肝癌疾病的中文医学文献,借助OpenAI API,分别构造了8000条问答数据和1000条多轮对话训练数据。然后,基于LLaMA-7B基座模型,进行有监督的微调,构建了“本草”中文医学大模型。 20、上海人工智能实验室:OpenMEDLab浦医 6月29日,由上海人工智能实验室牵头,并联合国内外顶级科研机构、高校及医院共同发布全球首个医疗多模态基础模型群“OpenMEDLab浦医”,并逐步开源。“OpenMEDLab浦医”融合了全球顶尖的AI研发能力、海量医学数据以及医学专家知识,首批发布的基础模型群中,包含基于医学图像、医学文本、生物信息、蛋白质工程等10余种数据模态训练而成的基础模型。该模型将促进基于医疗基础模型的跨领域、跨疾病、跨模态科研突破,同时助力解决医疗领域的长尾问题,推动医疗大模型的产业落地。
  • 《人工智能中场之争:大模型在产业变革中的应用探索》

    • 来源专题:数智化图书情报
    • 编译者:闫亚飞
    • 发布时间:2023-09-27
    • 2023年对于人工智能产业而言是非常重要的一年,尤其是以GPT-3、ChatGPT为代表的大模型技术所取得的显著成果标志着以专用小模型训练为主的“手工作坊时代”向通用大模型预训练为主的“工业化时代”的人工智能研究范式转变,敲开了通用人工智能的大门。AIGC(AI-Generated Content)指利用人工智能技术(生成式AI路径)来生成内容的新型内容生产方式。AIGC应用创新的技术支撑为“生成对抗网络(GAN)/ 扩散模型(Diffusion)”与“Transformer预训练大模型”的两类大模型分支。在国外AIGC应用展示出大模型的能量的同时,我国企业也加强了相关产品技术布局,云厂商、AI大厂、创企、各行业公司及技术服务商等产业各领域玩家纷纷发布大模型或基于大模型的应用产品及各类技术服务。 从商业化布局角度来看,如今基础大模型厂商可分为三类参与者,分别为云巨头厂商、人工智能公司或创业公司和学术研究机构,在定位有通用能力基座的同时打通向上商业化路径。其中,云巨头厂商将借助云服务及数据库资源,更强调MaaS能力输出。AI公司或创业公司将借助业务积累或生态资源锚定几个典型行业或业务场景展开商业占领。垂直领域厂商将基于开源模型或基模平台开发部署细分领域模型产品,厂商优势在垂类数据与业务理解。通用模型和各领域专有的知识数据结合,未来垂直大模型是重要的发展方向,本文重点讨论大模型在垂直行业部署与细分场景的落地应用现状。大模型在金融领域的应用探索 金融行业作为人工智能应用场景密集的行业,是大模型技术落地的最佳领域之一。以大模型为代表的新一代人工智能技术将加速金融数字化和金融智能化的发展,重塑现有业务流程,改变产业格局。大模型技术可应用于智能客服、投顾、营销、风控、运营、投研、投行、量化交易、低码研发等多个场景。第一是基于大模型的智能客服将超越人工服务,让高质量顾问式金融服务成为可能。在通用大模型的基础上,叠加金融客服领域的数据和专业服务经验,经过垂直领域定向训练后客服机器人既能与用户进行多轮对话,还能提供具体可行的解决方案。 第二是生成式大模型可以成为理财师、经纪人等从业者的“全能业务助理”。基于大模型的业务助理不仅了解国内外的宏观政策、行业信息、产品信息,还可以自动生成文章、报告,提供专业建议和方案辅助交流。 第三是广告和营销内容一键生成,营销效率大幅提升。以ChatGPT为代表的大模型技术,将带来知识型工作者生产效率的二次飞跃。过去,我们需要在海量信息中检索词条,将大量的精力投入到信息的获取、提炼与整合,自己做检索、设计、制作等工作。未来,大模型技术会适应并普及到所有知识型工作行业,例如文案、设计、编程等,人机协作将大幅提高工作效率。 大模型能够凭借强大的信息挖掘能力,唤醒金融机构大量沉积的信息,就像是一块巨大的磁石,做关键信息的抽取,为判别式小模型进行赋能。比如,在风险决策、信用评估、反欺诈等场景下,大模型能丰满信息的维度,挖掘出小模型无法覆盖到的区域。大模型对于小模型并非是替代或“消灭”,相反,两者将是相互协作的关系,大模型与小模型相互搭配,将大大提升金融决策的精准度和效率。 医疗保健行业充斥着各种类型的基于文本的文档,例如患者病历、索赔文件、临床记录、同意书和弃权书等。大语言模型(Large Language Model,LLM)能够快速阅读、解释大量文本并对其采取行动,这意味着他们可以为医疗机构带来优势,使他们能够以独特的方式安全、可靠地工作。医疗保健非常适合利用大型语言模型,因为给定的医疗系统的医疗记录中存在大量的潜在数据。 在这样一个文档密集的行业中,医疗保健领域并不缺乏大型语言模型的应用场景。以下是大型语言模型功能的示例,这些功能在医疗保健环境中应用时,可以简化流程并改进整体工作流程。 临床记录:医疗健康专业人员可以使用LLM创建准确且全面的临床记录,使用LLM分析患者数据并生成相关摘要。这有助于减轻记录负担,同时确保准确记录重要信息。改进信息提取:从非结构化文本(例如患者记录或研究文章)中识别和提取相关信息是LLM的另一个自然应用。这种能力使医疗保健组织能够释放隐藏在庞大数据存储库中的宝贵见解,最终支持更好的决策。高级沟通能力:由于大语言模型擅长理解自然语言,因此非常适合患者与提供者沟通等任务。这些模型可以通过以上下文相关的方式解释和回应患者的询问、担忧或反馈,促进更有效的互动。文件生成和管理:大语言模型可以自动生成重要的医疗保健文件,例如同意书、弃权书和出院摘要。通过从患者记录中提取相关信息并预先填充这些文档,LLM可以节省时间,最大限度地减少错误风险,并使提供者能够让患者感觉他们了解他们,而无需要求重复信息。当纳入智能入院和登记工作流程时,这些工具能够轻松捕获准确的患者信息,从而最大限度地提高临床和财务成果。 大模型在工业领域的应用探索 大模型在工业的应用,目前在生产制造、研发设计和经营管理领域都形成一些场景,但都处于起步和探索阶段。各工业相关领域技术服务商和行业解决方案商也都在积极布局AI大模型的行业应用,以下是大模型技术在工业领域的应用场景方向探索。 其中生产制造的应用包含运营管理,使用自然语言交互方式,分析操作和运营人员的自然语言指令,进行对应数据、信息的查找、呈现和关联分析等,提高信息查找和分析的效率,帮人员更直观快捷的获取所需的信息。质量安检,使用大模型提供更强的视觉检测能力,用于质检、安全监测等,提高模型泛化能力,降低训练样本需求。生成模拟检测图像的缺陷样本,补充小样本的不足,提高模型准确性等。自动对检测的结果进行分析,并生成检测报告等。在计划调度层面,使用大模型进行排产排程优化、生产和物流调度优化,提高算法能力,基于自然语言自动生成PLC控制代码,提高开发效率,降低开发门槛。在自动化控制层面,使用自然语言与机器人交互,对工业机器人进行智能控制,提高机器人场景适应性降低操作难度。 在可见的未来里,相信随着大模型技术的进一步发展,这类生成式AI产品将在工业互联网领域发挥越来越重要的作用,支持更多工业场景需求的落地实现。大模型在交通领域的应用探索 大模型在交通领域应用的优势:一是自然语言处理能力,如和文字相关的交通报告分析、语音识别等;二是轨迹大数据,在交通出行建模、拥堵研判,主流交通路径等方面有所应用;三是多模态,比如如何从视频转化为交通流指标等,都是交通大模型中非常重要的因素;四是计算机视觉模型,在车道线、红绿灯、交通违法事件等交通要素识别方面的应用广泛。 2023年4月,百度基于文心大模型在高速公路领域发布了数字人“简璐璐”,服务于路网监测、应急指挥、养护管理、公众出行全环节,可以结合用户问题,提供全新对话式交互,实时给出精准答复。随后,在交通管理领域发布了全域信控缓堵解决方案,能够提供全域感知、全域优化、全域协同和全域服务四大能力,实现信控优化的代际提升,可实现超千规模路口的全域拥堵治理。 2023年7月19日,北京交通大学联合中国计算机学会智慧交通分会、足智多模公司等正式发布并开源了国内首个综合交通大模型——TransGPT·致远,依托北京交通大学“交通大数据与人工智能”教育部重点实验室科研团队自主研发。与通用型多模态交通大模型产品不同,致远大模型自研发伊始就瞄准交通运输行业中的实际应用需求,基于研发团队长期汇聚积累的综合交通大数据,在交通态势预测、交通规划设计、公共交通服务、智能咨询助手、交通安全教育、交通协助管理、交通事故分析、自动驾驶辅助等方面形成具有实际应用价值的智能化支撑能力。交通态势的全面及时、精准感知是智慧交通的基础,也是一直以来困扰行业的难题。交通事件识别不准的问题在交通行业是普遍存在的。现阶段在应对AI大规模落地应用问题上,预训练大模型借助其通用、泛化能力优势为AI落地提供了新的解决思路。 交通感知方面,大模型可以进行道路路况识别和车辆车流密度检测。基于某帧画面生成当前路况描述并直接发布,这些数据可以连接到情报版或导航软件,将海量的监控图片、监控数据利用起来。此外,大模型在道路分割、服务区、停车场余位识别、交通事件检测等方面也有所应用,可做到让视频监测真正免配置,大幅提升检测准确率。交通治理方面,通过大模型的语义理解、泛化推理、自动取数能力可对历史交通数据和实时交通数据进行分析,精准定位、判断某路段和某区域的交通状况;快速聚焦交通运行核心痛点问题;预测未来交通状况;提供初步、快速的交通决策支持,缓解交通规划方案和治理经验复用高度依赖高阶人才的难题。交通控制系统优化方面,大语言模型通过集成和调度车辆监管、交通信号调整、智能导航、智能停车等多种智能服务,实现交通系统的动态优化和智能化服务,提高交通治理效率和安全性。交通物流行业应用方面,大模型的应用场景可分为两类,一类是人机交互类场景,如数字人、智能客服。面向问答类场景,通过调用大模型的理解能力、推理能力、解决问题的能力,将一个问题拆分成多个任务,由大模型和交通业务系统共同完成,并将语料资源整合成完整的答案交付给用户,从而开发作业系统增强服务、专业咨询引导和内容生产服务。 尽管大模型具有广阔的应用前景,但在实际应用中仍面临一些挑战。产业大模型的综合能力实际上取决于计算能力、行业专业知识和模型精调的结合。其中,行业专业知识至关重要,它涵盖了专家经验、行业数据、组织能力和工程能力,这是垂直企业的核心竞争优势所在。其次在落地应用过程中,如何确保在保障数据安全的前提下释放其价值,如何提高模型的准确性和可靠性,以及如何确保AI生成的内容的安全性、可信性和可靠性,这些都是在推动大模型产业化落地时需要各方共同努力解决的问题。