《中国科学院海洋研究所在基于人工智能的温跃层降尺度研究方面取得重要进展》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: 熊萍
  • 发布时间:2025-04-06
  • 近日,中国科学院海洋研究所尹宝树研究团队在基于可解释性深度学习模型的温跃层深度降尺度研究方面取得新进展,相关成果发表在海洋科学领域国际学术期刊Ocean Modelling(JCR1区)。

    温跃层是海洋中温度随深度急剧变化的水层,其存在显著增强了上层海洋的层结稳定性,这种独特的热力结构使其与海洋环流、内波、水团分布及海气交换等紧密关联,在海洋动力学和气候系统中具有重要作用。然而,由于观测技术的局限性,目前获取高质量的海洋温跃层结构实测数据仍然具有挑战。因此,如何建立高分辨率的卫星遥感资料与海洋次表层结构(如温跃层结构)的映射关系,已经成为物理海洋学研究中的一项重要课题。

    针对这一问题,研究团队通过利用海表温度(SST)、绝对动力地形(ADT)和海表风场(SSW)等关键海表环境要素,结合EN4观测数据,提出了一种基于Enhanced Block Attention Module-Convolutional Neural Network(EBAM-CNN)模型的降尺度方法,该方法能够有效利用高分辨率海表观测数据重构次表层中尺度结构特征。此外,研究团队通过SHAP可解释性算法量化了输入特征的贡献值,揭示了SST、ADT和纬度信息是影响温跃层深度的关键因子,有助于进一步理解温跃层的形成及变化机制。该研究成果为其他高分辨率次表层要素的重构提供了新的方法和思路,在海洋动力学研究和海洋环境变化分析等方面具有重要意义,具有显著的学术价值和广泛的实际应用前景。

    中国科学院海洋研究所与青岛科技大学联培研究生冯忠琨为第一作者,中国科学院海洋研究所齐继峰研究员为共同第一作者、通讯作者。合作者包括崂山实验室李德磊研究员、中国科学院海洋研究所尹宝树研究员,青岛科技大学杨树国教授等。该研究得到了国家自然科学基金、中国科学院战略性先导科技专项和国家重点研发计划的共同资助。

    论文信息:

    Feng,Z.1,Qi,J.1*,Li,D.,Xie,B.,Sun,G.,Yin,B.,& Yang,S. (2025). Attention-enhanced deep learning model for reconstruction and downscaling of thermocline depth in the tropical Indian Ocean. Ocean Modelling,https://doi.org/10.1016/j.ocemod.2025.102537



  • 原文来源:https://qdio.cas.cn/2019Ver/News/kyjz/202503/t20250325_7564559.html
相关报告
  • 《中国科学院海洋研究所在海洋中尺度涡三维温盐结构智能重构研究中取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:熊萍
    • 发布时间:2024-10-21
    • 近日,中国科学院海洋研究所李晓峰研究团队基于多源遥感数据和实测数据,有机耦合人工智能技术与物理先验知识,突破了海洋实测数据时空分布稀疏的限制,显著提升了反演精度与模型的泛化能力,实现高时空分辨率的中尺度涡三维温盐结构重构。该研究成果在遥感领域国际期刊IEEE Transactions on Geoscience and Remote Sensing发表。 中尺度涡旋广泛存在于全球大洋和边缘海中,对海洋能量、热量、质量以及营养物质和化学元素的输送具有关键作用。深入研究中尺度涡的三维结构,对理解全球海洋的物质和能量输运、海洋动力过程及生态系统有重要意义。然而,由于海洋实测数据的稀缺,开展高时空分辨率的涡旋三维观测仍面临巨大挑战。人工智能具有其强大的特征提取和非线性表达能力,研究团队已在基于人工智能的中尺度涡的识别、分类等研究中取得了显著进展,为基于多源遥感数据的中尺度涡三维温盐结构反演提供了新的解决方案。 本研究中,团队创新性地开发了耦合物理先验知识和人工智能技术的中尺度涡三维温盐结构反演模型——3D-EddyNet。该模型通过多分支网络分别输入海表遥感数据和涡旋物理知识,并引入了CBAM注意力机制。研究表明,在模型中引入物理知识能够显著提升模型反演精度。与现有的温盐反演模型相比,3D-EddyNet的R2值提高了10%-20%,均方根误差(RMSE)降低了20%-40%。 基于训练完成的3D-EddyNet模型,研究团队对黑潮延伸体(KE)和亲潮(OC)区域中未包含Argo剖面的涡旋进行了深入分析,验证了模型的广泛适用性。3D-EddyNet模型反演的KE和OC区域内反气旋涡和气旋涡的温盐结构与已有研究结果高度一致,充分证明了该模型在准确捕捉涡旋内温盐垂向变化以及中心到边缘水平变化方面的优越性。此外,利用3D-EddyNet对2000至2015年KE和OC海域涡旋温盐结构进行重构,其结果与ARMOR3D再分析数据的重构结果具有较高一致性,进一步表明3D-EddyNet在重建涡旋三维结构方面展现了出色的泛化能力。总体而言,3D-EddyNet为高时空分辨率的中尺度涡三维温盐结构研究提供了强有力的工具,能够有效帮助准确评估中尺度涡在全球海洋物质和能量输送中的作用,同时为其他海洋现象的数据重构和参数反演提供了新的方法与思路。 论文第一作者为中国科学院海洋研究所助理研究员刘颖洁,通讯作者为李晓峰研究员,合作者包括中国科学院海洋研究所研究生王浩宇和姜菲、天津大学周圆教授。该研究得到国家自然科学基金山东省联合基金、国家自然科学青年基金、中国科学院B类先导专项等资助。 相关论文信息: [1]Liu, Y., Wang, H., Jiang, F., Zhou, Y., & Li, X. (2024). Reconstructing Three-dimensional Thermohaline Structures for Mesoscale Eddies Using Satellite Observations and Deep Learning. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-16, https://doi.org/10.1109/TGRS.2024.3373605. [2] Liu, Y., & Li, X. (2023). Impact of surface and subsurface-intensified eddies on sea surface temperature and chlorophyll a in the northern Indian Ocean utilizing deep learning. Ocean Science, 19(6), 1579-1593,https://doi.org/10.5194/os-19-1579-2023. [3] Liu, Y., Zheng, Q., & Li, X. (2021). Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning. Geophysical Research Letters, 48(17), e2021GL094772, https://doi.org/10.1029/2021GL094772.
  • 《中国科学院海洋研究所在海洋障碍层结构反演重构方面取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-10-12
    • 近日,中国科学院海洋研究所尹宝树研究团队与美国加利福尼亚大学洛杉矶分校(UCLA)的学者携手合作,针对海洋障碍层结构反演重构方面取得新进展,研究成果在英国物理学会学术期刊Environmental Research Communications上发表。 海洋障碍层位于海洋的密度混合层底部与温度等温层顶部之间,其厚度变化对海洋的垂直混合过程产生直接影响,进而调控海表温度和海-气交互作用。障碍层的变化会影响热量和盐分在海洋内部的输运,从而对局地天气气候产生影响,包括热带气旋的生成和强度、降水模式的变化,以及更大尺度的气候现象如厄尔尼诺-南方涛动(ENSO)和印度洋偶极现象(IOD)。由于观测技术的局限性,目前获取高质量的海洋障碍层结构实测数据仍然具有挑战性。因此,利用高分辨率的卫星遥感资料与实测数据相结合来反演重构海洋内部关键结构,已经成为物理海洋学研究中的一项重要课题。 尹宝树团队采用先进的元学习技术,成功集成了卷积神经网络(CNN)、门控循环单元(GRU)和人工神经网络(ANN)三种机器学习模型,提出了一种新颖的多模型集成方法,从而显著提升了海洋障碍层结构的反演精度。通过利用海表温度(SST)、海表盐度(SSS)和海表风速(SSW)等关键海表环境要素,研究团队能够准确地重构出海洋障碍层结构。这一研究成果不仅突破了传统观测技术和数值模型的局限性,更展示了机器学习,尤其是元学习在海洋学研究中所拥有的巨大潜力和广阔应用前景。此外,该研究对于我们深入了解海洋动力学、推动海洋环境变化研究,以及应对全球气候变化均提供了宝贵的支持与贡献,具有显著的学术价值和广泛的实际应用前景。 该研究得到了国家重点研发计划和国家自然科学基金共同资助。中国科学院海洋研究所齐继峰副研究员为第一作者,合作者包括美国加州大学洛杉矶分校曲堂栋研究员和中国科学院海洋研究所尹宝树研究员。 文章信息: Qi, Jifeng, Tangdong Qu, and Baoshu Yin. Meta-learning-based Estimation of the Barrier Layer Thickness in the Tropical Indian Ocean. Environ. Res. Commun. 5 091005. https://doi.org/10.1088/2515-7620/acf9e1 https://iopscience.iop.org/article/10.1088/2515-7620/acf9e1