《Science,12月9日,Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and cathepsin L》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-12-23
  • Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and cathepsin L
    View ORCID ProfileMichael Dominic Sacco1, View ORCID ProfileChunlong Ma2, Panagiotis Lagarias3, Ang Gao2, Julia Alma Townsend4,...

    Science Advances  09 Dec 2020:
    Vol. 6, no. 50, eabe0751
    DOI: 10.1126/sciadv.abe0751

    Abstract
    The main protease (Mpro) of SARS-CoV-2 is a key antiviral drug target. While most Mpro inhibitors have a γ-lactam glutamine surrogate at the P1 position, we recently found that several Mpro inhibitors have hydrophobic moieties at the P1 site, including calpain inhibitors II and XII, which are also active against human cathepsin L, a host protease that is important for viral entry. In this study, we solved x-ray crystal structures of Mpro in complex with calpain inhibitors II and XII and three analogs of GC-376. The structure of Mpro with calpain inhibitor II confirmed that the S1 pocket can accommodate a hydrophobic methionine side chain, challenging the idea that a hydrophilic residue is necessary at this position. The structure of calpain inhibitor XII revealed an unexpected, inverted binding pose. Together, the biochemical, computational, structural, and cellular data presented herein provide new directions for the development of dual inhibitors as SARS-CoV-2 antivirals.

  • 原文来源:https://advances.sciencemag.org/content/6/50/eabe0751
相关报告
  • 《Science,4月24日,Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-04-25
    • Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors Linlin Zhang1,2, Daizong Lin1,3, Xinyuanyuan Sun1,2, Ute Curth4, Christian Drosten5, Lucie Sauerhering6,7, Stephan Becker6,7, Katharina Rox8,9, Rolf Hilgenfeld1,2,* See all authors and affiliations Science 24 Apr 2020: Vol. 368, Issue 6489, pp. 409-412 DOI: 10.1126/science.abb3405 Abstract The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) is a global health emergency. An attractive drug target among coronaviruses is the main protease (Mpro, also called 3CLpro) because of its essential role in processing the polyproteins that are translated from the viral RNA. We report the x-ray structures of the unliganded SARS-CoV-2 Mpro and its complex with an α-ketoamide inhibitor. This was derived from a previously designed inhibitor but with the P3-P2 amide bond incorporated into a pyridone ring to enhance the half-life of the compound in plasma. On the basis of the unliganded structure, we developed the lead compound into a potent inhibitor of the SARS-CoV-2 Mpro. The pharmacokinetic characterization of the optimized inhibitor reveals a pronounced lung tropism and suitability for administration by the inhalative route.
  • 《Nature,9月4日,Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-09-15
    • Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease Lifeng Fu, Fei Ye, Yong Feng, Feng Yu, Qisheng Wang, Yan Wu, Cheng Zhao, Huan Sun, Baoying Huang, Peihua Niu, Hao Song, Yi Shi, Xuebing Li, Wenjie Tan, Jianxun Qi & George Fu Gao Nature Communications volume 11, Article number: 4417 (2020) Abstract COVID-19 was declared a pandemic on March 11 by WHO, due to its great threat to global public health. The coronavirus main protease (Mpro, also called 3CLpro) is essential for processing and maturation of the viral polyprotein, therefore recognized as an attractive drug target. Here we show that a clinically approved anti-HCV drug, Boceprevir, and a pre-clinical inhibitor against feline infectious peritonitis (corona) virus (FIPV), GC376, both efficaciously inhibit SARS-CoV-2 in Vero cells by targeting Mpro. Moreover, combined application of GC376 with Remdesivir, a nucleotide analogue that inhibits viral RNA dependent RNA polymerase (RdRp), results in sterilizing additive effect. Further structural analysis reveals binding of both inhibitors to the catalytically active side of SARS-CoV-2 protease Mpro as main mechanism of inhibition. Our findings may provide critical information for the optimization and design of more potent inhibitors against the emerging SARS-CoV-2 virus.