《两篇Cell发现噬菌体抱团抑制细菌CRISPR免疫系统》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-07-22
  • CRISPR是规律间隔性成簇短回文重复序列(clustered regularly interspaced short palindromic repeats)的简称。它是旨在抵御外来DNA的细菌免疫系统的一个重要的组成部分。在细菌中,CRISPR的作用就像在人体细胞中的一把剪刀一样,切割外来的DNA链。尽管科学家们已知道CRISPR在野外大约一半的细菌中发现到,但他们对CRISPR与入侵的病毒或噬菌体之间的分子战争知之甚少。

    在2018年7月19日同时在线发表在Cell期刊上的两篇论文中,来自两个研究团队的研究人员提供了当入侵含有CRISPR的细菌时,噬菌体彼此间进行合作的证据。他们发现为了压制CRISPR的破坏,噬菌体通过联合起来快速地感染细菌来加以适应,而且有时一个噬菌体还会为此作为引火噬菌体(primer phage)牺牲自我。这两个研究团队---来自美国加州大学旧金山分校和英格兰埃克塞特大学----着重关注细菌和噬菌体之间基于CRISPR和抗CRISPR蛋白(anti-CRISPR protein)的免疫关系。这两篇论文的标题为“Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity”和“Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity”。

    加州大学

    加州大学旧金山分校的研究人员意外地发现噬菌体彼此间相互合作旨在赢得与CRISPR之间的时间和数量战争。为了成为一种有效的免疫策略,含有CRISPR的细菌必须快速地对噬菌体攻击作出反应,并且必须在噬菌体杀死它之前这样做。加州大学旧金山分校的Joseph Bondy-Denomy说,“这是一个非常快速的时间和数字游戏。CRISPR蛋白必须非常快地找到病毒DNA,如果无法做到这一点,那么病毒就会继续入侵并杀死细菌细胞。”

    Bondy-Denomy团队研究了铜绿假单胞菌(Pseudomonas aeruginosa),这是已知在遭受噬菌体感染前会预先表达数百个CRISPR分子的细菌之一。当单个噬菌体基因组进入细菌细胞时,CRISPR能够立即起作用。在一些其他的细菌中,CRISPR仅在遭受噬菌体感染时才被启动。

    在铜绿假单胞菌含有的大约30种已知的向导RNA(gRNA)中,每个CRISPR蛋白复合物含有其中的一种不同的gRNA。为了让CRISPR系统有效地发挥作用,它必须找到与它的gRNA相匹配的靶标。具有正确的gRNA的CRISPR蛋白复合物与当时恰好正在入侵的噬菌体匹配上,结合到噬菌体DNA上并进行切割,这样细菌细胞便战胜噬菌体的入侵。Bondy-Denomy说,“噬菌体带来的挑战是非常快地产生抗CRISPR蛋白(Acr)来阻止这种切割发生。”他在几年前首次发现了抗CRISPR蛋白。在这项新的研究中,他的团队发现单个噬菌体基因组不可能足够快地产生这些抗CRISPR蛋白,这是因为细菌细胞中的CRISPR蛋白已作好准备。

    Bondy-Denomy说,“我们认为正在发生的事情就是第一个噬菌体起着一个自杀性的噬菌体的作用。它会被破坏,但是一路上它会开始产生一些抗CRISPR蛋白,这些抗CRISPR蛋白中和一些CRISPR,从而帮助它的同类在随后发起感染。”他的团队正在提出一种新的模型,在这种模型中,第一个噬菌体有助于下一个噬菌体成功地感染细菌,即便第一个噬菌体为此付出生命的代价。至于谁会赢得CRISPR和噬菌体之间的战斗,这是由参与的CRISPR蛋白和抗CRISPR蛋白分子的数量和速度之间的临界点决定的。此外,该团队发现并非所有的抗CRISPR分子都具有相同的强度,这使得维持这两者之间的平衡更加复杂化。

    Bondy-Denomy团队认为,这种噬菌体合作是一种利他主义的形式,以确保噬菌体在宿主内继续复制,这一点并没有之前的病毒或噬菌体模型中加以报道,而且之前的模型通常认为病毒或噬菌体不过是蛋白外壳包围着的惰性核酸。他们希望这一发现将会刺激那些在病毒领域开展研究工作的人,特别是那些致力于研究人类病毒的人。

    埃克塞特大学

    埃克塞特大学的研究人员也发现感染铜绿假单胞菌的噬菌体颗粒彼此间能够合作来克服抗病毒的CRISPR防御。

    在埃克塞特大学的Edze Westra和Stineke Van Houte的领导下,这些研究人员(以下称埃克塞特大学团队)确定一些含有CRISPR的细菌对编码着抗CRISPR蛋白的噬菌体具有部分免疫力。他们证实这些噬菌体合作克服CRISPR防御的过程:第一个噬菌体阻断宿主CRISPR免疫系统,从而产生CRISPR免疫防御受到抑制的细菌宿主,接着随后的噬菌体就能够成功地在这个细菌宿主中复制。

    鉴于单个噬菌体本身不能完全压制CRISPR,这需要噬菌体开展“团队合作”来克服它并在细菌群体中建立感染。随着CRISPR免疫防御受到抑制的细菌宿主在细菌群体中的数量在增加,越来越多的噬菌体感染取得成功,这就导致感染扩散。因此,为了让噬菌体感染在整个细菌群体中扩散,环境中最初需要一定数量的噬菌体。导致这种噬菌体感染扩散所需的初始噬菌体数量标志着一个临界点,它决定着噬菌体是否持续复制或或者说这种感染是否会消失。

    埃克塞特大学团队认为这一突破性的发现可能有助于改善噬菌体疗法,这种疗法长期以来一直被研究和测试用于治疗病原性细菌感染。Van Houte说,“噬菌体共同作用来抑制细菌免疫系统的这一发现对我们来说是非常令人吃惊的,这能够有助于改进利用噬菌体治疗人类细菌感染的策略,这是因为用于治疗的噬菌体剂量将决定着噬菌体是否能够成功地清除细菌感染。”

    Westra 说,“更一般地说,这表明病毒对宿主的持久性免疫抑制作用能够对病毒感染的流行病学产生深远的影响。”

  • 原文来源:http://news.bioon.com/article/6725027.html
相关报告
  • 《Nature:来自噬菌体的强力反击!噬菌体产生抗CRISRP RNA来抑制细菌CRISPR–Cas系统》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-10-23
    • 一项微观上的发现不仅能让科学家们了解我们周围的微生物世界,还能提供一种控制CRISPR-Cas生物技术的新方法。在一项新的研究中,新西兰奥塔哥大学的Peter Fineran教授和丹麦哥本哈根大学的Rafael Pinilla-Redondo博士领导的一个国际研究团队揭示了细菌病毒---也称为噬菌体---抑制细菌 CRISPR-Cas 免疫系统的一种新方法。相关研究结果于2023年10月18日在线发表在Nature期刊上,论文标题为“Bacteriophages suppress CRISPR–Cas immunity using RNA-based anti-CRISPRs”。 论文共同第一作者、奥塔哥大学微生物学与免疫学系噬菌体-宿主相互作用实验室的David Mayo-Muñoz博士说,这一发现可能让我们了解环境中的微生物动态、使基因编辑更安全,并带来更有效的抗生素替代品。他说,“这一发现令科学界兴奋不已,因为它让我们对如何阻止CRISPR-Cas防御有了更深入的了解。” CRISPR-Cas是细菌拥有的能够保护它们不受噬菌体感染的免疫系统。它的工作原理是将噬菌体的DNA片段添加到细菌的基因组中。细菌最终会有一个记忆库,里面储存着过去感染噬菌体的经历,它会把这些经历像人脸照片一样归档,在噬菌体再次攻击时,利用它们来识别和降解特定的噬菌体。 “如果有噬菌体入侵,它的部分 DNA 会被添加到记忆库中,然后在这个过程中将 DNA 转化为 RNA。每条 RNA 就像一个向导,这样 CRISPR-Cas 系统就能正确识别并消灭入侵的噬菌体。记忆库中的每一个添加的DNA片段都被CRISPR重复序列分割开来,这些重复序列就像书挡一样堆叠在相邻的噬菌体序列之间。有趣的是,噬菌体进化出了不同的方法来克服这些防御系统---这就像是一场进化军备竞赛。细菌拥有CRISPR-Cas,因此噬菌体开发出了抗CRISPR,这使它们能够阻断细菌的这些免疫复合物。” Mayo-Muñoz说,“我们发现了噬菌体阻止CRISPR-Cas系统的全新方法。” 之前的科学家们已发现,一些噬菌体的基因组中含有CRISPR重复序列,而在这项新的研究中,这些作者证实噬菌体会给细菌加载这些RNA重复序列,从而阻止CRISPR-Cas。 Fineran教授说,这些抗CRISPR RNA会使细菌的CRISPR-Cas免疫复合物失明。他说,“噬菌体的基因组中含有细菌CRISPR-Cas系统的成分。它们利用这些分子模拟物来抑制细菌的免疫系统,使噬菌体得以复制。” 这些作者还发现当噬菌体将 RNA 重复序列加载到 CRISPR-Cas 蛋白上时,并非所有正确的蛋白都会被加载,从而形成无功能的免疫复合物。“这种分子模拟物破坏了细菌的防御能力和CRISPR-Cas系统的功能;它基本上就是一个诱饵。” 人们对CRISPR-Cas的一大兴趣在于它经编程后能够精确地编辑基因组的特性。有趣的是,抗CRISPR可用作关闭或调整这项技术的安全开关。“要想发挥CRISPR-Cas技术的潜力,重要的是能够控制它、开启和关闭它以及调整它,从而提高其准确性和治疗效果。” Mayo-Muñoz博士说,“我们的发现首次证明了抗CRISPR RNA的存在,与之前发现的抗CRISPR蛋白相比,抗CRISPR RNA的遗传序列更短,而且由于它们是基于已知的CRISPR重复序列,我们有可能为所有CRISPR-Cas系统及其特定应用设计抗CRISPR RNA。” CRISPR-Cas最终将用于基因疗法---修复导致疾病的突变基因,但为了使它更安全,需要抗CRISPR来调节这种技术。 噬菌体还可以作为抗菌剂杀死病原菌,提供抗生素的替代品,但如果受感染的细菌具有活跃的CRISPR-Cas系统,就需要使用含有合适的抗CRISPR的噬菌体来中和它。 Fineran教授说,“能够构建定制的抗CRISPR将是工具箱中的一个强大选择。我们很高兴能够对噬菌体如何与细菌宿主作战提供全新的见解。我们希望这些 RNA anti-CRISPR RNA能够提供一种新的方法来协助控制 CRISPR-Cas 技术。” 参考资料: 1. Sarah Camara-Wilpert et al. Bacteriophages suppress CRISPR–Cas immunity through RNA-based anti-CRISPRs. Nature, 2023, doi:10.1038/s41586-023-06612-5. 2. Scientists uncover new way viruses fight back against bacteria https://phys.org/news/2023-10-scientists-uncover-viruses-bacteria.html
  • 《科学家发现10种新型细菌免疫防御系统》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2018-02-02
    • 在一项大规模的系统性研究中,来自以色列魏茨曼科学研究所的Rotem Sorek教授和他的研究团队揭示出细菌存在10种之前未知的细菌免疫防御机制。Sorek说:“我们发现的这些系统不同于之前看到的。但是,我们认为在这些系统中,有一到两种系统可能有潜力扩大基因编辑工具箱,而其他的系统指向人体免疫系统的起源。”相关研究成果于2018年1月25日在线发表在Science期刊上,论文标题为“Systematic discovery of antiphage defense systems in the microbial pangenome”。 Sorek解释道,细菌并不能够仅依靠CRISPR来对付噬菌体。事实上,许多噬菌体都具有抑制CRISPR活性的“抗CRISPR”蛋白,这提示着其他的系统收拾残局。Sorek和他的团队通过构建出一种扫描所有细菌基因组---迄今为止大约有5万种基因组---的计算机程序来开始对这些系统的研究。他们开发的这些算法并不寻找具有事先确定的特征的序列,而是寻找参与免疫防御的基因的“统计学特征(statistical signature)”,比如,它们在“防御岛(defense islands)”---在那里,几个防御相关的基因被发现位于彼此附近---中的位置。随后,鉴于免疫系统基因很少单独地发挥作用(即便在细菌中,也是如此),这些研究人员开发出复杂的计算机分析方法,以便理解哪些基因联合起来并共同组成一种防御系统。 一旦他们将潜在的防御基因从几百万个减少到几百个时,这些研究人员就需要测试他们鉴定出的候选机制。他们不是尝试从数百种不同的细菌中分离出基因序列,而是寻求合成生物学的帮助:订制这些基因。他们把成串的基因密码---总共有40万个碱基---送到一个商业实验室,从而合成数十种不同的多基因系统用于测试。他们将这些合成系统插入到天然免疫系统已被灭活的实验室细菌中。接着,他们让这些细菌接触噬菌体和其他的感染因子,以便观察这些移植的防御系统是否是有活性的。在他们研究的各种系统中,10种防御系统强力地保护了这些实验室细菌免受感染,因而将它们鉴定出为新的免疫防御系统。 Sorek说,在计算机分析和开展实验的各个阶段之间,这项研究要求在他的实验室里工作两年的六名人员付出大量的努力。这项研究是由Shany Doron博士和Sarah Melamed博士领导的,而且Gal Ofir、Azita Leavitt博士、Anna Lopatina博士和Gil Amitai博士密切参与其中。这个团队每隔一周就开一次“防御委员会(defense council)”来讨论不同的研究分支和他们已发现的防御机制。