《氮化铝:半导体领域一直在“征服”的材料》

  • 来源专题:关键矿产
  • 编译者: 欧冬智
  • 发布时间:2023-07-13
  • 氮化铝:半导体领域一直在“征服”的材料 2023/06/12 点击 123 次 中国粉体网讯  氮化铝属于典型的第三代半导体材料,它具有特宽禁带和非常大的激子束缚能,其中禁带宽度为6.2eV,属于直接带隙半导体。由于氮化铝具有多种突出的优异物理性能,如高的击穿场强、热导率、电阻率等,在半导体领域中一直备受关注,也是半导体领域一直在“征服”的材料。
    氮化铝的性能特点
    AlN是以共价键为主的晶体,属于六角晶系类金刚石氮化物,其理论密度为3.26g/cm3,莫氏硬度7~8,室温下的强度高,且强度会随着温度的升高下降较慢。
    与其它几种陶瓷材料相比较,氮化铝具有优异的综合性能,尤其是其出色的导热性能,非常适用于半导体基片和结构封装材料,在电子工业中的应用潜力非常巨大。
    氮化铝的主要性能参数
相关报告
  • 《华为布局第三代半导体材料》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2019-08-31
    • 据媒体报道,华为今年4月刚成立的哈勃投资已于近期入股山东天岳,并获得了10%的股份。山东天岳核心产品为第三代半导体材料碳化硅。据公司官网介绍,碳化硅被称为是第三代半导体的核心材料,具有耐高压、耐高频等突出特点。 华为通过哈勃投资入股山东天岳,或许表明其对于第三代半导体材料前景的认可。资料显示,哈勃科技投资有限公司注册资本为7亿元人民币,由华为投资控股有限公司100%控股。 哈勃投资,名字颇具深意。哈勃望远镜自1990年搭乘美国“发现者号”航天飞机进入太空,开启了自己的传奇一生。如果要探索太空,是离不开哈勃的。设立哈勃投资,或表明了华为意图通过产业投资,对科技前沿领域进行探索的初衷。 历数三代半导体材料 自半导体诞生以来,半导体材料便不断升级。第一代半导体材料主要是指硅(Si)、锗元素(Ge)半导体材料,其在 集成电路 、电脑、手机、航空航天、各类军事工程等领域中都得到了极为广泛的应用。 第二代半导体材料主要是指化合物半导体材料,如砷化镓(GaAs)、锑化铟(InSb);三元化合物半导体,如GaAsAl、GaAsP;还有一些固溶体半导体,如Ge-Si、GaAs-GaP;玻璃半导体(又称非晶态半导体),如非晶硅、玻璃态氧化物半导体;有机半导体,如酞菁、酞菁铜、聚丙烯腈等。 第二代半导体材料主要用于制作高速、高频、大功率以及发光电子器件,是制作高性能微波、毫米波器件及发光器件的优良材料。因信息高速公路和互联网的兴起,还被广泛应用于卫星通讯、移动通讯、光通信和GPS导航等领域。 第三代半导体材料主要以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代表的宽禁带半导体材料。与第一代和第二代半导体材料相比,第三代半导体材料具有更宽的禁带宽度、更高的击穿电场、更高的热导率、更大的电子饱和度以及更高的抗辐射能力。 在应用方面,根据第三代半导体的发展情况,其主要应用为半导体照明、电力电子器件、激光器和探测器、以及其他4个领域,每个领域产业成熟度各不相同。在前沿研究领域,宽禁带半导体还处于实验室研发阶段。 各国高度重视第三代半导体发展 目前,许多国家将第三代半导体材料列入国家计划。美国、欧盟均建立了相应的中心及联盟, 致力于研发第三代功率半导体 功率器件 。 我国政府主管部门高度重视第三代半导体材料及相关技术的研究与开发。从2004年开始对第三代半导体技术领域的研究进行了部署,启动了一系列重大研究项目。2013年科技部在“863”计划新材料技术领域项目征集指南中,明确将第三代半导体材料及其应用列为重要内容。2015年和2016年国家科技重大专项02专项也对第三代半导体功率器件的研制和应用进行立项。 碳化硅电力电子器件市场在2016年正式形成,根据Yole预测,碳化硅市场规模在2021年将上涨到5.5亿美元,年复合增长率可达到19%。由于我国具有广阔的应用市场,届时国产功率半导体市场也将实现大规模的增长。 哪些上市公司率先布局了碳化硅? 三安光电主要从事化合物半导体材料的研发与应用,专注于碳化硅、砷化镓、氮化镓等半导体新材料及相关领域。今年3月,三安光电旗下三安集成电路与美的集团达成战略合作,双方共同成立第三代半导体联合实验室,将通过研发第三代半导体功率器件导入白色家电,推动产业创新发展。 海特高新目前已完成包括砷化镓、氮化镓、碳化硅及磷化铟在内的6项工艺产品的开发,可支持制造功率放大器、混频器、低噪音放大器、开关、光电探测器、激光 器、电力电子等产品,产品广泛应用于5G移动通信、 人工智能 、雷达、 汽车电子 等领域。截止目前公司部分产品已实现量产,服务客户数和订单持续增加。 楚江新材在超高温热工装备领域具备领先优势,是国内唯一具有碳及碳化硅复合材料热工装备、高端真空热处理系列装备、粉末冶金系列热工装备三大系列且均保持领先的高端热工装备企业。
  • 《我国碳基半导体制备材料取得关键性突破》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2020-05-31
    • 我国碳基半导体制备材料取得关键性突破 出自:中国电子报 5月26日,北京元芯碳基集成电路研究院宣布,由该院中国科学院院士北京大学教授彭练矛和张志勇教授带领的团队,经过多年研究与实践,解决了长期困扰碳基半导体材料制备的瓶颈,如材料的纯度、密度与面积问题。他们的这项研究成果已经被收录在今年5月22日的《科学》期刊“应用物理器件科技”栏目中。 目前,大到航空航天、金融保险、卫生医疗等领域,小到智能手机、家用电器等数码家电所使用芯片绝大部分采用硅基材料的集成电路技术,该项技术被国外厂家长期垄断,国内电子产品所需要的芯片则大多依赖进口。据统计,中国每年进口芯片的花费高达3000亿美元,甚至超过了进口石油的花费。 “采用硅以外的材料做集成电路,包括锗、砷化钾、石墨烯和碳,一直是国外半导体前沿的技术。而碳基半导体则具有成本更低、功耗更小、效率更高的优势,更适合在不同领域的应用而成为更好的半导体材料选项。我们的碳基半导体研究是代表世界领先水平的。”彭练矛院士说。 以企业应用为例:与国外硅基技术制造出来的芯片相比,我国碳基技术制造出来的芯片在处理大数据时不仅速度更快,而且至少节约30%的功耗。碳基技术在不久的将来可以应用于国防科技、卫星导航、气象监测、人工智能、医疗器械等多重领域。由于碳基材质的特殊性,它能让电路做到像创可贴一样柔软,这样的柔性器械,如果应用于医疗领域将使患者拥有更加舒适的检查体验;因碳基材质特点,在一些高辐射、高温度的极端环境里,采用碳基技术制造出的机器人将更好的代替人类执行危险系数更高的任务;谈到个人应用:碳基技术若应用到智能手机上,因其拥有更低的功耗,将使待机时间更加延长。“现在我们用手机看电影3个小时的可能就没电了。若将手机植入碳基技术的芯片,至少可以看上9个小时的电影都不会断电,且手机开多少个程序都不会出现卡顿。”北京元芯碳基集成电路研究院研发部负责人许海涛说。 据了解,碳基技术也是发达国家一直研发预替代硅基的新技术。由于我国碳基技术起步较早,目前的技术是基于二十年前彭练矛院士提出的无掺杂碳基CMOS技术发展而来,近年来取得了一系列突破性的进展,极大地提升了我国在世界半导体行业的话语权。