《微生物所在肺炎链球菌β-内酰胺耐药快速检测方法上取得新进展》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2019-07-29
  • 细菌耐药已成为影响全人类健康的重大问题,引起了全世界广泛的关注。WHO 提出的解决耐药措施之一是研发耐药快速准确的新型诊断技术和相关试剂。传统的检测方法基于细菌培养,周期长,易导致漏诊、误诊,延误最佳治疗时机。而基于基因的检测技术,如基因芯片、数字 PCR等技术具有灵敏、高效、快捷的特点,是公认的快速检测技术。然而,到目前为止由于耐药基因型与表型结果的不一致,使得基因检测只能作为培养法的辅助手段用于耐药的检测。冯婕研究组针对肺炎链球菌β-内酰胺耐药这一重要临床问题,采用机器学习的方法挖掘耐药相关数据的规律,建立了基因型和表型之间的联系,使得基因检测不再是一个辅助手段,而有望成为一种主要的耐药快速检测技术。

      肺炎链球菌β-内酰胺耐药的主要机制是三种青霉素结合蛋白(PBP1a,PBP2b和PBP2x)的转肽酶结构域(TPD)的改变。由于不同临床肺炎链球菌分离株PBPs的高度变异性,以及链球菌间重组导致的嵌合结构,使得PBPs极具多样化,导致了很难将PBPs的突变与临床耐药性联系起来。冯婕组研究人员首先将NCBI数据库已公布的PBPs序列通过类别方差(categorical variance)法计算,得到了139个与耐药高度相关的HVLs (highly variant amino acid)。再以4300株肺炎链球菌的转肽酶结构域(TPD)序列以及对应头孢呋辛、阿莫西林的耐药表型作为数据库,将其中80%的数据作为训练集,20%的数据作为检验集,用HVLs去预测头孢呋辛和阿莫西林的耐药水平,结果发现与用PBPs蛋白的TPD序列预测效果一样好。进一步分析发现,HVLs与PBPs的某些区域的序列有很强的相关性。因此,分别使用来自pbp2x (2253 bp)的750 bp片段和来自pbp2b (2058 bp)的750 bp片段可以很好的预测头孢呋辛和阿莫西林的耐药性(图)。这种长度只需要一个Sanger测序反应即可,不仅使检测操作更加简单,也降低了成本。此外,通过对人工构建的突变体和来自更多临床分离的菌株的耐药表型的检测,进一步确认了机器学习法能精确预测耐药表型。应用该预测方法,分析了NCBI数据库中已测序的8138株肺炎链球菌,进而建立了耐药表型、血清型以及ST型之间的关联,促进了对肺炎链球菌的流行病学的认识。

      该研究成果于2019年6月11日在线发表于Briefings in Bioinformatics杂志上,题为“Systematic analysis of supervised machine learning as an effective approach to predicate β-lactam resistance phenotype in Streptococcus pneumoniae ”。冯婕组张朝东博士、句英娇硕士、唐娜博士生为文章的共同第一作者。北京大学第一医院临床药理研究所李耘教授,冯婕组张刚副研究员,宋宇琴助理研究员,科研助理方海岭为共同作者。冯婕研究员(lead contact)与南方科技大学杨亮教授为共同通讯作者。该研究得到国家自然科学基金和北京市科学技术委员会的资助。

  • 原文来源:http://www.im.cas.cn/xwzx2018/kyjz/201907/t20190718_5343560.html
相关报告
  • 《海洋小单胞菌天然产物everninomicin的生物合成研究取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-05-04
    • 近日,中国科学院南海海洋研究所张长生团队在海洋微生物天然产物everninomicin的生物合成及工程菌株构建研究中取得新进展,相关成果以“Biosynthesis and Engineered Overproduction of Everninomicins with Promising Activity against Multidrug-Resistant Bacteria”为题,于2022年4月21日在线发表于ACS Synthetic Biology(《ACS合成生物学》)。 靶向细菌核糖体的正糖霉素类天然产物具有特殊的高度修饰的寡糖骨架,与目前商用的核糖体靶向抗生素如大环内酯类、四环素类和氨基糖苷类等抗生素靶点均不同,不易产生交叉耐药,具有进一步开发的潜力。具有八糖骨架的everninomicin D是小单胞菌产生的正糖霉素类天然产物,自上世纪60年代起由美国先灵葆雅公司(Schering-Plough)分离鉴定,该公司通过调研发现其具有良好的抑菌活性。然而everninomicin的生物合成及代谢工程研究一直受限于野生型菌株的产量低下,其生物合成研究及构效关系分析一直进展缓慢。 研究团队以生物活性为导向,发现南海来源的小单胞菌SCSIO 07395(田新朋研究员提供)具有产生微量everninomicin 类化合物的能力。由于该类化合物生物合成步骤较多,结构复杂且代谢关键节点未知,暂时难以开展理性的代谢工程研究,于是采取了直接增加整个生物合成基因簇的拷贝数的方法进行增产。通过活性检测及代谢物分析发现,与野生型菌株相比,工程菌株的everninomicin 类化合物1-4的产量显著提升,同时还产生了野生型不产的新类似物5和6。 将工程菌株发酵分离得到的everninomicin类似物与包括5种氨基糖苷类、3种大环内酯类、3种β-内酰胺类和3种四环素类在内的28种商用抗生素在体外对21株革兰氏阳性菌及7种革兰氏阴性菌进行了系统的活性比较。结果显示everninomicin对葡萄球菌、肠球菌和链球菌活性显著,整体活性优于除thiostrepton和rifamycin外其他抗生素;此外,everninomicins对阴性菌中的鲍曼不动杆菌、霍乱弧菌和溶藻弧菌也具有中等强度的活性。 然后进一步选择了抑菌谱相似的vancomycin、linezolid及avilamycin同化学性质稳定的everninomicin D、E和M进行了半抑制浓度(IC50)的比较。测试结果显示everninomicin D、E和M对葡萄球菌和肠球菌的IC50与vancomycin、linezolid及avilamycin相当;对于链球菌则显示出明显的优势,特别是everninomicin D和M在体外对肺炎链球菌及猪链球菌显示出纳摩尔级水平的抑制作用;此外,everninomicin E对三种革兰氏阴性病原体鲍曼菌、溶藻弧菌和霍乱弧菌活性较为显著。最后,进一步利用基因簇倍增技术构建了everninomicin M的高产菌株,目前最高产量可达98.6 mg/L,为后续动物实验提供了物质基础。 综上所述,本研究从南海来源的野生型小单胞菌出发,针对结构及合成途径均非常复杂的天然产物,克服了野生型菌株遗传操作上的困难,直接通过增加生物合成基因簇的拷贝数达成了初步的产量提升及化学多样化,成功制备出多种具有显著活性的everninomicin类似物,为快速提高微量且复杂的活性天然产物的产量供生物合成及构效关系研究提供了参考案例。 博士后朱梦奕和王利娟为本文共同第一作者,张长生研究员为本文通讯作者。本研究得到了国家重点研发计划项目、国家自然科学基金委项目、博士后创新人才支持计划、中国博士后科学基金、广东省基础与应用基础研究基金、广东省海洋经济发展专项资金项目、王宽诚教育基金项目、海南省重大科技计划项目、广东省培养高层次人才特殊支持计划和广东省重点领域研发计划项目等资助。 相关论文信息:Mengyi Zhu#, Lijuan Wang#, Haibo Zhang, Liping Zhang, Bin Tan, Qi Huang, Yiguang Zhu, and Changsheng Zhang*. Biosynthesis and Engineered Overproduction of Everninomicins with Promising Activity against Multidrug-Resistant Bacteria. ACS Synthetic Biology 2023, DOI: 10.1021/acssynbio.3c00055. https://pubs.acs.org/doi/10.1021/acssynbio.3c00055
  • 《海洋所在海洋腐蚀微生物检测技术研发取得新进展》

    • 来源专题:深海资源开发
    • 编译者:徐冰烨
    • 发布时间:2024-10-08
    • 最近,国际期刊Advanced Materials(IF=27.4)刊发中国科学院海洋研究所在海洋腐蚀微生物检测技术研发方面的最新研究成果“High-Entropy Ceramics Enhanced Droplet Electricity Generator for Energy Harvesting and Bacterial Detection”。 铜绿假单胞杆菌(P. aeruginosa)是一种常见的海洋腐蚀微生物,快速、精准检测P. aeruginosa的技术开发对于腐蚀环境评估、预测具有重要的价值。研究团队开发了基于单液滴产电效应的海洋腐蚀微生物检测方法,具体设计了一种由高熵材料作为中间层结构的产电模型,极大抑制摩擦电荷的损耗,将输出电压提升至525V,是传统材料输出电压的四倍。在此基础上,通过改变电容性或摩擦电荷总量实现对微生物的检测,其中改变摩擦电荷总量的方法可以通过固-液界面吸附效应实现,单个液滴状态的变化影响摩擦电荷的总量。相较于改变电容性的检测方法,该方法具有更简便的制备方法和更便捷的检测流程,无需对电极进行修饰。 该技术的开发为海洋微生物腐蚀的风险预警提供技术支持,为海洋工程、装备等的安全运行提供保障。 海洋关键材料重点实验室博士学生王从宇及硕士学生王健明为论文共同第一作者,王鹏研究员为论文通讯作者。研究得到了国家自然科学基金等项目的资助。