《(跨膜)平面细胞极性小鼠品系快速指南》

  • 来源专题:重大疾病防治
  • 编译者: 蒋君
  • 发布时间:2023-10-12
  • 核心平面细胞极性(PCP)复合体在很远的细胞距离上传达方向信息,产生极化细胞行为和结构。该复合物由跨膜蛋白CELSR1-CESLR3,VANGL1,VANGL2,FZD3和FZD6以及细胞质蛋白PRICKLE1-PRICKLE3和DVL1-DVL3组成。携带PCP基因基因组改变的小鼠品系的可用性不断增加,极大地促进了评估PCP的时间和组织特异性功能的研究(有关品系的遗传和表型细节,请参阅补充表1)。在设计实验时,重要的是要考虑这些小鼠是否以及如何用于回答特定的科学问题。小鼠品系的日益普及在PCP领域创造了一个激动人心的时刻。如果有效使用,这些系将使研究人员能够更深入地了解哺乳动物PCP的细微差别和特殊性。
相关报告
  • 《Science丨体内编辑肺干细胞,对小鼠进行持久基因校正》

    • 编译者:李康音
    • 发布时间:2024-06-19
    • 2024年6月13日,德克萨斯大学西南医学中心团队联合凯斯西储大学团队和ReCode Therapeutic合作在Science杂志上发表了题为In vivo editing of lung stem cells for durable gene correction in mice的研究论文。报道了肺部选择性脂质纳米颗粒(Lung SORT LNPs)成功在囊性纤维化小鼠模型的肺部实现对致病基因的修正。此项研究可能为囊性纤维化和其他遗传性肺病患者带来希望。 与常见的针对肺部递送的吸入法(由于给药方便,适合蛋白质替代疗法)相比,静脉注射的 SORT LNPs 通过避免疾病相关的粘膜屏障,并且由于肺内皮床与 LNPs 的紧密接触,可能更有机会进入肺基底干细胞。Siegwart团队最初使用经过基因改造的健康小鼠进行实验,使得经过基因编辑的细胞会发出红光。然后,他们通过静脉注射递送包含靶向肺部的基因编辑工具的 SORT LNPs。肺部持续的红光表明带有编辑基因的细胞至少存在了22个月。进一步的研究表明,超过70%的小鼠肺干细胞被基因编辑了。这种治疗方法对大约10%的囊性纤维化患者尤其有益,这些患者的疾病是由CFTR基因罕见突变或一种称为无义突变(例如 R553X)的特定突变类型引起的。Trikafta 无法治疗他们的疾病,而 Trikafta (Vertex)是目前囊性纤维化的黄金标准疗法。 在另一项实验中,研究人员使用 SORT  LNP对携带 R553X/F508del 突变的囊性纤维化患者分离出的肺细胞进行了碱基编辑,这些细胞在气液界面上培养,可以模拟肺部上皮细胞结构和功能,被认为是预测临床治疗效果的有力指标。实验表明,针对R553X突变基因的碱基编辑成功恢复了约53%的囊状纤维化跨膜转导调节子(CFTR) 的功能,这一结果与接受正对F508del突变的 Trikafta 治疗组在该实验中的结果相当。接下来,研究人员使用携带 R553X 突变的小鼠模型进行实验。尽管囊性纤维化的小鼠模型不会表现出人类囊性纤维化的呼吸系统症状,但它们确实与健康小鼠相比具有明显的生理差异。实验表明,碱基编辑在这种疾病模型中也取得了成功。 这些结果表明,基于器官选择性的脂质纳米颗粒 (SORT) 的基因编辑疗法有望长期治疗囊性纤维化和其他遗传性肺病。后续更多的研究需要在具有囊性纤维化症状的动物模型中验证这种方法,并确保这种潜在疗法的安全性。
  • 《科学家在小鼠细胞中制造COVID受体蛋白》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-03-01
    • 近日,美国能源部布鲁克海文国家实验室和哥伦比亚大学的一组科学家展示了一种生产大量受体的方法,这种受体是导致COVID-19的病毒SARS-CoV-2在人体细胞表面结合的受体。现在病毒刺突蛋白与人类“ACE2”受体之间的结合是病毒感染的第一步。在小鼠细胞中制造功能性人类ACE2蛋白给科学家们提供了一种研究这些受体的新方法,并有可能将它们投入使用。此外,正如刚刚发表在《Virology》期刊上的一篇论文所描述的那样,这种方法可以促进其他被证明难以通过其他方式产生的复杂蛋白质的研究。 布鲁克海文实验室的科学家们在疫情早期的最初目标是制造大量的人类ACE2,然后将这种蛋白质附着在纳米颗粒上。然后可以测试ace2包被的纳米颗粒作为抗病毒治疗药物和/或作为检测病毒颗粒的传感器。 布鲁克海文实验室病毒学家Paul Freimuth与布鲁克海文实验室功能纳米材料中心(CFN)的科学家合作领导了这项研究,他说:“对于这些应用中的任何一种,你都需要大量的蛋白质,而且蛋白质必须具有完整的功能。”“但是制造像ACE2这样的功能性膜蛋白特别具有挑战性,因为蛋白质在细胞膜上定位的过程很复杂。” 一个原因是这些蛋白质在合成后和插入细胞膜之前以各种方式被修饰。特别是,添加到蛋白质中的碳水化合物分子在长蛋白质链如何折叠成最终的3D结构以及蛋白质如何在膜中发挥作用方面起着关键作用。 “碳水化合物约占ACE2蛋白质量的三分之一,”Freimuth说。 科学家用来人工合成蛋白质的最简单的细胞,即细菌,缺乏附着这些碳水化合物附加物的酶。因此,布鲁克海文的研究小组转向了老鼠的细胞,作为哺乳动物,老鼠更像我们,因此能够进行同样的碳水化合物处理。众所周知,小鼠细胞擅长拾取和表达“外来”基因。虽然小鼠细胞也会产生ACE2受体,但小鼠版本的这种蛋白质不会与SARS-CoV-2刺突结合。这意味着科学家们将有一个简单的方法来观察小鼠细胞是否产生人类ACE2蛋白——通过观察刺突是否与细胞结合。 ACE2基因的发现和表达 为了增加小鼠细胞整合并正确读取人类ACE2基因的机会,研究小组使用了完整的基因。人类和其他“高等生物”的基因除了编码构成蛋白质的氨基酸的DNA序列外,还包含大量信息。这些额外的信息有助于调节细胞染色体内的基因结构和功能。 科学家们搜索了作为人类基因组计划的一部分而生成的克隆DNA片段文库,找到了包含完整ACE2基因的片段,并完成了其嵌入的调控信息。人类基因组计划是美国能源部资助的一项努力,旨在绘制出人类所有基因的位置。然后,他们将小鼠细胞暴露在涂有这种DNA片段和另一种蛋白质基因的纳米颗粒中,这种蛋白质使细胞对致命的抗生素具有抵抗力。 “在这种情况下,纳米颗粒充当DNA递送剂,被细胞吞噬,这样DNA就有可能整合到小鼠细胞染色体中,”Freimuth说。“为了找到携带外源基因的细胞,我们将抗生素添加到细胞培养中。那些不能吸收和表达抗生素抗性基因的细胞死亡,而那些获得抗生素抗性的细胞存活下来并生长成菌落。” 科学家们将其中大约50个菌落扩展到单个培养中,然后对它们进行测试,以确定有多少菌落也携带了人类ACE2基因并产生了人类受体蛋白。 检测蛋白质产量 “大约70%的耐抗生素菌落在细胞表面表达人类ACE2蛋白,”Freimuth说。“进一步的分析表明,这些菌落平均含有28份人类ACE2基因。” 重要的是,小鼠细胞保留了“外源”ACE2基因拷贝,并在至少90代细胞中持续制造由这些基因编码的人类ACE2蛋白。 细胞产生的人类ACE2蛋白水平通常与整合到小鼠基因组中的ACE2基因拷贝数成正比。一些克隆的小鼠细胞产生的ACE2是正常小鼠细胞的50倍。 科学家们使用了多种方法来测试小鼠制造的人类ACE2蛋白是否具有功能。其中包括证明含有COVID刺突蛋白的“假病毒”(即sars - cov -2的非致病性替代品)可以与受体结合并感染细胞。 “这些传染性试验表明,在这些小鼠细胞上表达的人类ACE2蛋白是完全有效的,”Freimuth说。 用途及影响 与此同时,来自CFN的共同作者Oleg Gang和Feiyue Teng探索了多种方法来制造富含人类ACE2的细胞外纳米囊泡,以潜在地治疗COVID-19。他们还在研究将ACE2蛋白放置在纳米颗粒上,用于治疗感染或快速检测病毒。 “基于ace2的纳米囊泡面临的挑战在于增强其对SARS-CoV-2的中和作用。我们还在寻找增强和利用ace2偶联纳米颗粒的结合敏感性和特异性的方法,使其对病毒诊断有用。这两种方法都需要未来的优化努力,”Teng说,他是CFN的一名研究助理,广泛研究了这项研究的生物学方面和潜在的基于纳米科学的应用。 “我们很高兴将纳米材料制造的进步与生物分子方法相结合,以开发新的治疗和传感策略,”Gang说,他在哥伦比亚大学担任联合职位。“这项研究使我们能够克服一些方法上的问题,因为纳米材料和生物系统需要完全不同的表征方法。我们在这里学到的东西对我们下一步加强基于纳米粒子的生物传感很重要。” 除了使重组ACE2蛋白的应用成为可能之外,这项工作还展示了一种生产多种复杂蛋白的新方法。例如,介导无数生物和疾病过程的大量细胞表面受体,以及工业上重要的蛋白质,如单克隆抗体和酶。 Freimuth说:“我们的方法是使用完整的基因和小鼠细胞,这些细胞可以适应在巨大的悬浮培养中生长,就像用于培养细菌的液体肉汤培养一样,可以促进这些蛋白质和其他重要蛋白质的大规模生产。” 这项研究得到了实验室指导研究和开发基金的支持,并使用了布鲁克海文国家实验室功能纳米材料中心(CFN)的资源。CFN是美国能源部科学办公室的用户设施,由科学办公室(BES)支持。