《科学家在国际空间站上进行烧结实验 研发新型合金》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-06-06
  • 一项具有数百年历史的材料粘结工艺正在国际空间站上进行实验测试,该试验可能为轨道实验室进行更多材料研究铺平道路。烧结是将不同的材料加热,使它们的颗粒压缩在一起的过程。

    Rand表示通过(MSL SCA-GEDS-German)项目来探究空间中烧结变化的规律。第一次有人试图在地球以外的另一种重力环境中,甚至在微重力环境中烧结,烧结的结果可能会让人感到惊讶。目前还没有足够的试验来告诉我们结果会是怎样的。我们必须以经验为基础,尝试一下,看看会发生什么。

    通过不断的实验可以更好了解地球上的烧结和空间烧结之间的差异,那么该技术可能有望为飞行中的制造提供解决方案,为现场资源的拼接提供可靠的途径。对火星或月球的任务可以利用这一新的烧结技术。将来自月球或火星栖息地的土壤(称为风化石)拼合在一起生产需要的零件。这些土壤包括松散的岩石,灰尘和土壤等混合沉积物。

    烧结可用于各种日常用品的生产。从手表的金属部件到一组支架或眼镜上的铰链进行的金属粘合都可以用到烧结。该过程的一个熟悉的例子就是陶瓷在窑炉中烧制时发生的结合。

    这个实验目的在于研究在微重力中烧结一种新的合金会有什么新的发现。德国人说:“在20世纪40年代以后,烧结开始在制造业领域发挥重要的作用。汽车行业在采用了烧结后,汽车领域出现了惊人的增长。将烧结技术应用的空间中也是有重要意义的。”

    需要进行检测的组件已交付给SpaceX CRS-14号太空站,并在材料科学研究架(MSRR-1)内的材料科学实验室低梯度炉(MSL-LGF)中进行烧结。

    该研究使用一种称为液相烧结的方法来测试微重力引起的烧结变形程度。液相烧结与传统烧结略有不同,液相烧结采用较低熔点的材料将混合体粘结到不易烧结的颗粒上。熔融的添加剂加快并改善了连接过程。研究结果将使科学家能够调整未来的计算,从而在微重力条件下创造出更成功的结合。

    烧结发生在原子级别,温度升高会导致这些原子移动。研究表明液相有助于原子发生移动。在地球上,我们有非常稳定的结构,颗粒通过重力推到一起,但是我们在之前的实验中发现,没有重力的压缩 ,被烧结的部件会变形很大。

    最初,德国团队的科学家希望能够烧结钨,镍和铁合金。但该团队必须制造出能适应1210℃的温度的设备,这台低温度梯度炉所允许的最大温度符合要求。通过新的方案可以制造出一种新的合金。在基于以前对锰的熔点和烧结应用的研究的基础上,设计并制造出钨,镍,铜和锰的新型组合。

    这种合金甚至可以在地球上进行低温烧结。这种结合过程已经为制造业带来了革命性进展和更多的选择。虽然地球引力对烧结的影响是众所周知的。研究的结果仍然可以为技术的改进提供新见解。同样,由德国团队开发的新合金可用于各种工业应用。

    原文来自:phys,原文题目:Firing up a new alloy: Sintering solutions aboard the ISS,

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=194807
相关报告
  • 《国际空间站将接收用于在轨 3D 打印研究的新型生物打印机》

    • 来源专题:智能制造
    • 编译者:icad
    • 发布时间:2024-08-30
    • 总部位于芬兰的生物打印公司 Brinter AM Technologies Oy 宣布,它将向国际空间站 (ISS) 发射其 Brinter Core 3D 生物打印机。 Brinter 将向 Redwire Space NV 提供生物打印机。这家太空系统制造商正在领导一个由欧洲航天局资助的项目,以设计、开发和验证国际空间站的 3D-BioSystem 设施。 适应后,Brinter Core 将能够 3D 打印在轨 3D 生物样品,并满足严格的太空技术要求。该系统将集成到位于国际空间站哥伦布模块中的 3D-BioSystem 设施中。 进入近地轨道 (LEO) 后,国际空间站工作人员将使用 Brinter Core 测试微重力对 3D 打印细胞结构的影响。这项研究旨在提高有关如何处理太空卫生紧急情况的知识。它还将探索个性化药物开发测试、毒理学和 3D 打印身体部位。 “生物打印技术在支持太空医疗方面也具有巨大潜力,并增加了机组人员在长期任务中的自主性,”Brinter AM Technologies Oy 首席执行官 Tomi Kalpio 评论道。 他补充说,宇航员在治疗皮肤烧伤或骨骼损伤时,可以使用生物打印机“创建类似组织的结构来替换他们身体的受损部位”。 支持 ISS 研究的新型生物打印机 据 Brinter 称,太空中的 3D 打印细胞结构将在支持人类太空探索方面发挥至关重要的作用。长期和遥远的任务将需要新技术来治疗严重的健康状况,因为及时返回地球可能不是一种选择。 Kalpio 表示,在长期的深空探索任务中,“需要用更少的资源做更多的事情,才能在充满挑战的太空环境中发挥作用,因此各种技术元素都得到优化和小型化。 该公司认为,将细胞或组织特异性生物材料与不同细胞类型与高分辨率 3D 生物打印相结合,可以改进组织和器官建模方法。该研究还将努力增加对组织生成、再生和长寿的生物物理机制的理解。 太空和 LEO 的低重力条件也为研究 3D 生物打印结构提供了新的环境,这些结构可以成熟为组织和更大的器官。在微重力环境中,细胞在空间上不受限制地生长并组装成复杂的 3D 聚集体。然而,在地球上,细胞通常在 2D 单层培养物中生长。 微重力还具有在 3D 打印过程中无需支撑结构的优势。在 LEO 中,可以 3D 打印结构,这些结构不必在生长过程中承受其重量。 收到生物打印机后,ISS 团队将培养 3D 打印细胞、类器官、组织外植体和 3D 细胞基质。这将为评估微重力、辐射和其他航天因素对人体组织的影响提供独特的机会。这包括骨骼、软骨、上皮间充质、血管网络和最终的完整器官。 据报道,基于微重力的 3D 打印生物模型将在实现血管化和神经支配的可行且功能性的 3D 打印组织方面发挥重要作用。该研究旨在促进对有效生物工程和生物制造过程的理解,并优化细胞和组织工程技术。 展望未来,Brinter 团队正在努力朝着月球上的 3D 生物打印迈出下一步。 在轨 3D 打印 Brinter Core 系统将成为最新发射到国际空间站的生物打印机。在过去的几年里,增材制造公司、学术研究人员和商业企业都已将 3D 打印技术送去在微重力条件下进行测试。 去年,Redwire 使用生物制造设施在国际空间站上成功制造了 3D 生物打印的人类膝关节半月板。3D 打印的弯月面随后通过 SpaceX 的 Crew-6 任务返回地球进行进一步分析。 3D 打印后,弯月面在 Redwire 的高级空间实验处理器 (ADSEP) 中在国际空间站上培养 14 天。美国宇航局宇航员弗兰克·卢比奥 (Frank Rubio)、沃伦·霍伯格 (Warren Hoburg) 和斯蒂芬·鲍文 (Stephen Bowen) 与阿联酋宇航员苏丹·内亚迪 (Sultan Al Neyadi) 一起进行了这项调查。据说这一成就为太空半月板损伤的改进治疗开启了新的方法,这是美国军人最常见的损伤之一。 2023 年,五家比利时公司和研究中心合作 3D 打印人工心脏和循环系统,该系统将于 2025 年送往国际空间站。 作为 AstroCardia 项目的一部分,研究人员希望将微型心脏送入轨道将使他们能够更好地研究器官的衰老过程。这是因为在零重力条件下,心脏的老化速度要快 20 倍。 除了生物打印,法国金属 3D 打印专家 AddUp 还根据 ESA 合同开发了一种金属 3D 打印机,专为太空 3D 打印而设计。该系统是与空客防务与航天公司合作开发的,旨在评估在持续微重力条件下的增材制造能力和性能。
  • 《科学家开发新型燃料电池催化剂》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-10-29
    • 阻碍环保氢燃料电池广泛应用于汽车、卡车和其他车辆的一个因素是铂催化剂的成本。 使用不太贵重的铂的一种方法是将其与其他较便宜的金属结合使用,但这些合金催化剂在燃料电池条件下往往会迅速降解。 现在,布朗大学的研究人员已经开发出一种新型合金催化剂,既能减少铂的使用,又能在燃料电池测试中保持良好的性能。 据《焦耳》杂志报道,这种催化剂由铂合金和纳米颗粒中的钴制成,在反应性和耐久性方面都超过了美国能源部(DOE) 2020年的目标。 “合金催化剂的耐久性是该领域的一个大问题,”布朗大学化学研究生Junrui Li说。 “研究表明,合金最初的性能比纯铂要好,但在燃料电池中,催化剂的非贵金属部分会很快被氧化和过滤掉。” 为了解决这个浸出问题,Li和他的同事开发了一种特殊结构的合金纳米颗粒。 这些粒子有一个纯铂外壳,围绕着一个由铂和钴原子交替层构成的核心。 布朗大学(Brown)化学教授、该研究的资深作者Shouheng Sun表示,这种分层的核心结构是催化剂反应性和耐久性的关键。 “内核中原子的分层排列有助于平滑和收紧外壳中的铂晶格,”Sun说。 “这增加了铂的反应性,同时也防止了钴原子在反应过程中被吃掉。这就是为什么在金属原子随机排列的情况下,这些粒子比合金粒子表现得更好。” 关于有序结构如何增强催化剂活性的细节在焦耳论文中有简要描述,但更具体地说,在发表在《化学物理杂志》上的另一篇计算机建模论文中。 这项建模工作由安德鲁·彼得森(Andrew Peterson)领导,他是布朗工程学院的副教授,也是焦耳论文的合著者。 为了进行实验工作,研究人员测试了催化剂的能力来执行氧还原反应,这对燃料电池性能和耐久性是至关重要的。 在质子交换膜(PEM)燃料电池的一侧, 从氢燃料中剥离出来的电子会产生驱动电动机的电流。在电池的另一端,氧原子吸收这些电子来完成一个循环。 这是通过氧还原反应完成的。 初步测试表明,该催化剂在实验室环境下表现良好,优于更传统的铂合金催化剂。 新催化剂在3万次电压循环后仍然保持活性,而传统催化剂的性能明显下降。 但是,尽管实验室测试对于评估催化剂的性能很重要,研究人员说,它们并不一定能显示催化剂在实际燃料电池中的性能。 与实验室测试环境相比,燃料电池环境温度更高,酸度也不同,这将加速催化剂的降解。 为了弄清楚这种催化剂在这种环境下能维持多久,研究人员将这种催化剂送到洛斯阿拉莫斯国家实验室,在一个实际的燃料电池中进行测试。 测试表明,该催化剂在初始活性和长期耐久性方面都优于美国能源部(DOE)设定的目标。 美国能源部要求研究人员开发催化剂,到2020年,其初始活性为每毫克铂0.44安培,在3万次电压循环(大致相当于燃料电池汽车使用5年)后,其活性至少为每毫克铂0.26安培。 对新催化剂的测试表明,它的初始活性为每毫克0.56安培,在3万次循环后的活性为每毫克0.45安培。 “即使经过了30000个循环,我们的催化剂仍然超出了能源部最初的活性目标,”Sun说。 “在真实的燃料电池环境中,这种性能真的很有前途。” 研究人员已经申请了催化剂的临时专利,他们希望继续开发和完善它。