《北京低碳清洁能源研究院煤基锂电负极材料关键技术达到国际领先水平》

  • 来源专题:先进材料
  • 编译者: 李丹
  • 发布时间:2023-11-12
  • 来自石墨烯网站

    7月5日,中国石油和化学工业联合会在北京组织行业知名专家,对北京低碳清洁能源研究院及宁夏煤业完成的煤基锂离子电池石墨负极材料成套技术进行了科技成果评价。来自清华大学、天津大学、石科院、北京化工大学、吉林大学等单位的七位资深专家组成评价委员会,评委一致认为北京低碳清洁能源研究院开发的煤基锂离子电池石墨负极材料快充性能达到同类产品国际领先水平,总体处于国际先进水平。

    北京低碳清洁能源研究院在碳基、硅基、锂金属负极及钠离子电池负极等电化学储能材料领域深耕基础研究多年,结合集团公司资源和产业优势,积极响应国家在高端碳素材料等战略性新兴产业布局的要求,开展在煤及煤化工副产物高值化利用方面的研究。其中碳基负极材料技术成熟度高,优先在宁夏煤业进行了百吨级产业化中试,同时配合集团内其他子分公司进行了负极材料产品开发。

    该项技术创新性地选用特定结构和组成的煤为原料,项目团队围绕“晶粒调控、结构调控、形貌调控、表面修饰”展开技术攻关研发,成功开发出微观结构独特的煤基锂离子电池石墨负极材料,同时首次提出评价石墨负极本征快充性能的新方法。该项技术已申请国家发明专利15项,授权8项,并得到多家客户的认可。评价委员会建议把握行业发展关键窗口期,加快该项技术的产业化速度。

  • 原文来源:http://nano.cnpowder.com.cn/nano/newsdetail.php?id=71485
相关报告
  • 《北京低碳清洁能源研究院储能技术研究获突破》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-03-05
    • 近日,北京低碳清洁能源研究院与清华大学化工系合作完成的“高能量密度全液体有机电化学活性物质液流电池” 研究成果在美国化学会主办的《ACSAppliedEnergyMaterials》上发表,并被作为杂志封面重点报道,受到社会广泛关注。 据悉,大规模储能(或电网储能)技术是提高可再生能源并网率和普及应用的关键技术,也是发展能源互联网、分布式发电、电力辅助调频、离网供电、安全备用电源等领域的关键使能技术。此次北京低碳清洁能源研究院与清华大学化工系合作完成的“高能量密度全液体有机电化学活性物质液流电池”研究成果首次提出了基于全液体活性物质的有机液流电池,理论能量密度高、理论功率密度高和反应活性好,是当前最有前景的大规模储能技术之一,与传统的液流电池相比,具有安全性好、功率和容量可以独立设计、储能时间长、输出功率大、储能容量大且易于扩展等优点。 低碳院开发的高功率密度液流密度液流电池电堆照片及测试结果。典型的千瓦级液流电池功率密度超过500 mW cm-2,高于同级别传统液流电池2-3倍,实现电堆的小型化和材料的高效化,具备明显的低成本优势。 同时,该液流电池的正极和负极分别采用原料来源丰富的2,5-二叔丁基-1-甲氧基-4-(2-甲氧乙氧基)苯和2-甲基二苯甲酮。电池的开路电压达到2.97 V,高于传统液流电池1-1.5倍,理论能量密度达到223 Wh L?1,是传统液流电池理论能量密度(50 Wh L?1)的4倍以上。实验表明,该活性液流电池两极的活性物质具备优良的电化学性能和较好的循环稳定性,电流效率达到95%,能量效率达到70%。该研究从一个全新的角度初步探索成功提高液流电池能量密度的方向,对于研究和开发新一代液流电池技术具有重要的启发意义。
  • 《达到国际领先水平!上上电缆聚丙烯绝缘产品关键技术取得重要突破》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2023-05-30
    • “天下大事,必作于细”。缩短生产周期,降低加工能耗,提高可回收利用率,在国外企业竞相研发、国际化竞争加剧的压力之下,电力电缆产业如何进一步开辟高质量发展新赛道,“上上”方案给出了优先解。 5月13日,由江苏上上电缆集团有限公司、中国电力科学研究院有限公司、燕山石化、西安交通大学四家单位联合研制的“热塑性聚丙烯绝缘中压电力电缆”新产品和“聚丙烯绝缘材料原位聚合与电力电缆制造关键技术”新成果成功通过由中国电力企业联合会主持、中国科学院院士和国内知名专家组成的鉴定委员会评定,其技术水平及科技成果达到国际领先水平。 中流击水,正当其时 瞄准痛点,勇立潮头敢为先 交联聚乙烯是目前广泛应用的电力电缆绝缘材料,但由于其是热固性塑料,退役后难以回收利用,因此开发热塑性聚丙烯绝缘电力电缆显得尤为重要。 公开资料显示,热塑性聚丙烯绝缘性能优异、可回收再利用,具有明显的经济环保优势;绝缘线芯挤出过程无需加热交联,生产能耗可减少50%以上,并且生产过程无需停放,缩短了产品交付期;聚丙烯电缆退役后,每千米10kV聚丙烯绝缘电缆(三芯、导体截面185m㎡)可回收近500kg以上优质塑料。 然而,普通聚丙烯模量高、韧性差,现有改性方法对材料的电气性能有一定损耗,如何实现电气-机械性能的协同调控和多维评价,成为项目团队需攻克的技术难题。 在“用料”上下足功夫。针对聚丙烯电缆材料共聚制备和电缆制造关键技术,项目团队在国际上首次开发了聚丙烯绝缘料原位聚合技术,实现了工业化装置的温度、压力等工艺的匹配优化和聚丙烯结构的精确调控。针对热塑性聚丙烯绝缘电力电缆安装过程中外半导电屏蔽层不可剥离问题,开发采用了聚丙烯合金界面改性技术,实现了可剥离屏蔽中压电缆设计和稳定制造。 在“工艺”上巧思细琢。针对大厚度聚丙烯绝缘(绝缘厚度超过10.5mm)挤出后不同冷却对结晶的影响、绝缘线芯鼓包等技术难题,上上电缆从材料配方调控、新型螺杆设计、氮气保压阶梯冷却工艺优化三个方面入手,掌握了直接合成热塑性聚丙烯绝缘高温三层共挤和氮气保压阶梯冷却工艺,由此,上上电缆具备了2.5mm-18mm绝缘厚度聚丙烯绝缘电缆的稳定制造能力,并完成了6kV-110kV热塑性聚丙烯绝缘电力电缆的设计制造。 在“标准”上严谨求证。针对评价热塑性聚丙烯绝缘电缆是否具备耐受250℃的短路能力,现有标准依据不足的问题,上上电缆、项目组团队与检测机构合作,搭建了可实时测温的试验回路,提出了电缆绝缘热稳定试验方法,建立了热塑性聚丙烯绝缘电缆短路能力的有效评价手段。 道阻且长,行则将至 深耕六年,干在实处奋力搏 21世纪初,世界各国电力企业已相继开展聚丙烯绝缘电力电缆的有关研究。日本Mitsubishi电缆公司最早开展聚丙烯电力电缆绝缘材料的选型研究,并采用间规聚丙烯/聚烯烃弹性体共混改性材料研发了22kV电缆;意大利Prysmian公司基于高性能热塑性弹性体绝缘材料开发了87/150kV聚丙烯绝缘高压电缆,其中中压电缆已在欧洲应用5万千米以上。此外,英国GnoSys公司、韩国LS公司也在研究聚丙烯绝缘电缆。 虽然从1990年起国内就实现了潜油泵用聚丙烯绝缘电缆的研发和应用,但对聚丙烯绝缘电力电缆的研发起步较晚,且存在不同的聚丙烯电缆料改性路线。上上电缆于2016年10月开始热塑性聚丙烯绝缘电缆的预研工作,到2017年年底完成电缆料可加工性能的研究及生产线的初步改造,具备产品试制能力,之后,上上与用户科研单位、知名大学、知名石化企业进行深层次的联合开发,开发的“额定电压 10kV和35kV 热塑性聚丙烯绝缘电力电缆”通过了国家电线电缆质量监督检测中心全性能检测。此后几年,上上生产的该类电缆先后在江苏溧阳供电线路、国网辽宁沈阳供电线路、国网浙江安吉供电线路等投入运行,状态良好。 2022年6月,经过近三年的产品性能反复验证及试验评价方法研究,由上上电缆牵头与行业众多线缆企业等共同起草的国内首个热塑性聚丙烯绝缘中压电力电缆中国电器工业协会团体标准发布实施,填补了国内空白。 深耕六年,前行不辍。为加快国产高端电缆科技创新及产业化进程,适应绿色、环保的发展理念,上上电缆干在实处、走在前列,进一步推动了我国聚丙烯绝缘电力电缆技术的发展。 2022年8月,工信部等五部门联合发布的《加快电力装备绿色低碳创新发展行动计划》明确提出,要开展热塑性环保电缆材料等相关装备的研制。由此可以看出,聚丙烯绝缘电缆已成为电网及其装备绿色低碳发展的重要方向,在未来输配电、新能源发电等领域具有广阔的应用前景。 上上电缆总工李斌表示,在探索聚丙烯绝缘电力电缆大规模商业化落地的过程中,需密切关注市场需求,全行业共同发力,致力于材料持续优化、工艺技术水平提升。