《基于先进的柔性发光表面处理策略的超稳、高亮度量子点复合材料》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-06-05
  • 虽然量子点(QDs)在柔性发光二极管(LED)中具有显著的应用潜力,但溶剂保护量子点的损失导致量子产量低、稳定性差,严重制约了其发展。通过将CdS/ZnS、CdSe@ZnS/ZnS、CdSe/CdS QDs与聚二甲基硅氧烷(PDMS)混合在原位氢化硅基表面处理策略中,制备出了三种原色的柔性QD led (Q-LEDs),使该设备具有高度的超超能力和发光性能。表面处理策略主要包括控制溶剂用量、QDs提纯次数、PDMS中QDs浓度、QDs制备工艺氧化等。CdSe@ZnS/ZnS-PDMS复合材料的最高QY为82.03%,高于QD溶液的QY(80%)。经紫外漂白、有机溶剂(丙酮、乙醇、水)、加热处理后,QDs、PDMS的QYs值保持较高,表现出良好的稳定性。利用成型技术进一步制备了qled混合发光器件,证明了其具有良好的电流和热稳定性。柔性的Q-LEDs可以扩展到其他形状,如纤维和块状,这表明量子聚合物复合材料在光源和显示器等方面具有巨大的潜力。

    ——文章发布于2018年6月1日

相关报告
  • 《用于3D打印的新型柔性压电复合材料》

    • 来源专题:数控机床——前沿技术
    • 编译者:icad
    • 发布时间:2020-07-08
    • 北京大学、南方科技大学和济南大学的研究人员最近设计了一种陶瓷-聚合物复合材料,可以用于打印复杂的三维网格结构。该复合材料首次发表在《纳米能源》杂志上的一篇论文中,具有许多理想特性,包括高柔韧性和高机电能量转化率。 压电陶瓷材料,如Pb(Zr,Ti)O3 (PZT)通常具有显著的机电能量转换能力。然而,这些材料大多具有固有的刚性,这使得它们远远不适合制造柔性电子产品。 开展这项研究的研究人员董树祥(音译)说:“通常情况下,压电陶瓷是易碎的,因此,它们不适合直接集成到柔性电子产品中。我们想开发一种3D打印的、柔软的压电陶瓷复合材料,它是一种可热固化的聚合物,在环境机械振动或力的刺激下,表现出机械灵活性和大的机电电压。幸运的是,我们成功了,我们的合成材料有很大潜力,可用于未来的软传感器。” 研究团队创造的材料由掺杂有银涂层的PNN-PZT陶瓷颗粒的聚二甲基硅氧烷(PDMS)弹性体基质组成。它的设计和组成与过去设计的其他压电陶瓷材料大不相同。 这种新型压电陶瓷材料也相对容易生产,因为传统的压电陶瓷材料通常需要使用耗时的高温烧结制造方法或是涉及昂贵的立体光刻激光3d打印工艺。新型压电陶瓷材料独特的设计和制造工艺最终使其比过去开发的同类材料更具有弹性,使其具有弹性性能 “经过电极化过程,我们的复合材料表现出良好的机电耦合和强大的力-电压响应(即这比基于PZT的脆性陶瓷高出一个数量级。我们的工作最有意义的发现是我们的复合材料的强大的力-电压响应,以及更灵活和弹性的性能。” 作为研究的一部分,研究人员使用他们设计的新合成材料打印了许多复杂的三维网格结构。他们的研究结果表明,这种材料有取代目前用于打印转换机电能量或触摸传感器的电子设备的脆性压电陶瓷的潜力。 这项研究对软机器人零件的生产以及其他技术设备的生产具有重要的意义。例如这种复合材料可以用于打印假肢、肌肉或能够探测生物信号的传感器。 “我们现在将继续开发软压电陶瓷复合材料和3d打印方法,”董树祥说。“当然,我们也在寻找可能的合作,使我们为机器人应用开发的软压电复合材料的使用成为可能。”
  • 《宁波材料所等提出全新MAX相和MXene合成新策略》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-03-30
    • MAX相是具有六方晶体结构的纳米层状化合物,分子式为Mn+1AXn(n=1、2或3),其中M为前过渡族金属,A主要为ⅢA和ⅣA主族元素,X为碳或氮,n=1~3。MAX相的晶胞由Mn+1Xn单元与A原子面交替堆垛而成(如图1),特殊的晶体结构使MAX相兼具陶瓷和金属的优良特性,是一种很有潜力的高温结构材料。中国科学院宁波材料技术与工程研究所先进能源材料工程实验室(筹)前期在国家自然科学基金重大研究计划和中国科学院先导专项的支持下,与北京大学、中国科学院近代物理研究所、中国科学院上海应用物理研究所和美国麻省理工学院等单位对MAX相材料的耐辐照损伤能力开展了系统的研究,揭示了该类材料具有极佳的事故容错能力,在压水堆核燃料包壳涂层、钍基熔盐堆和加速器驱动新能源系统等国家重大工程可望得到应用。近年来,MAX相在熔盐储热、熔盐电解、熔盐辅助合成和熔盐堆等变革性能源领域获得广泛关注。高温熔盐大多具有较强的腐蚀性,其在应用环境下与结构材料的化学相容性直接影响到熔盐系统的容错能力与长期服役稳定性。因此,能源系统用先进结构材料与熔盐在高温下的化学相容性成为系统设计中普遍关注的材料科学问题。   前期,宁波材料所科研人员发现MAX相陶瓷材料在氯化物熔盐中会同部分氧化物发生显著的反应,并观察到独特的A位原子晶格位精确置换行为,由于生成物中存在不导电相氧化铝,使得合成的新材料产量低,原子分辨表征困难(《无机材料学报》,2019,1,60-64)。近期,研究人员详细研究了系列传统Ti3AlC2、Ti2AlC、V2AlC、Cr2AlC等MAX相材料同氯化物高温熔盐的相互作用,由于低沸点氯化铝极易同MAX相产物高温下分离,终于在世界上首次实现了高质量合成出Ti3ZnC2、Ti2ZnC、V2ZnC、Cr2ZnC等系列全新MAX相材料(图2a),并且发现该置换过程与MAX相化学键特征以及ZnCl2熔盐配位结构的内在关系。ZnCl2为代表的过渡族金属氯化物熔融盐通常都是较强的路易斯酸,这是因为熔融ZnCl2中存在配位不饱和的Zn2+离子,这部分Zn2+离子是强烈的电子受体,其作用类似于酸溶液中的H+离子。Zn2+离子攻击Ti3AlC2等MAX相中结合较弱的A层原子(Al),使其转化为低沸点的AlCl3而挥发,原位被还原的Zn原子进一步占据Al原子留下的空位,形成以Zn为A位的MAX相。此外,该研究发现V2ZnC和Ti2ZnN两种新型MAX相在ZnCl2熔盐中并未发生向MXene转化的过程,这是由于其Mn+1Xn亚层对A层原子的束缚能力较强,导致其在ZnCl2中结构稳定性更高,因此V2ZnC和Ti2ZnN有望为耐ZnCl2高温熔盐腐蚀的结构材料。实验室研究员常可可通过热力学相图分析得知,A位为Zn的MAX相材料在1300℃下为非稳定相,只能在低温下(如550℃)存在,而低温粉末冶金烧结合成无法提供足够的能量使得原子按照MAX相原子堆垛方式重排,这也是为什么MAX相材料组成元素受到局限的原因。A位原子精确置换的合成策略避免了传统粉末冶金合成MAX相所需克服的高热力学势垒以及竞争相的产生,因此有望成为合成更多全新MAX相材料的通用路径。系列锌MAX相材料的成功合成也将彻底改变材料领域关于MAX相中“A主要为ⅢA和ⅣA族元素”的经典定义。该研究也是继瑞典林雪萍大学在原子分辨透射电镜下观察到Ti3AuC2和Ti3IrC2 MAX相材料后再次人工合成出A位为副族元素的MAX相材料(Nature materials, 2017, 16 (8), 814)。考虑到副族元素具有丰富的外层d电子,该研究结果有望将三元层状MAX材料的研究从高温结构领域拓展到功能应用领域(如磁性、光电、催化、超导等),在物理、化学和生物诸多学科取得新的应用突破。   研究人员继而发现Ti3ZnC2和Ti2ZnC在ZnCl2熔盐中存在进一步的结构转化:即位于MAX相A层的Zn原子再次被熔盐中的Zn2+所攻击,从A层抽离(图2b)。熔盐中Cl-进一步进入A层与Mn+1Xn亚层结合,形成Mn+1XnCl2(Ti3C2Cl2和Ti2CCl2)的结构单元并沿层间解离,得到一类被称为MXene的全新二维材料(图2c)。MXene材料是近年来被发现的新型二维层状碳/氮化物,在储能、催化、电磁吸收/屏蔽、复合材料以及传感器等领域展现出良好的应用前景。迄今为止,多数MXene材料都通过HF酸刻蚀MAX相的A层原子所制备,得到表面基团类型大多为-F、-O、-OH。该研究得到的Ti3C2Cl2和Ti2CCl2系世界范围内首次制备得到全Cl基团的MXene材料。有研究表明基团类型的改变会对MXene的电子结构和化学稳定性带来影响,从而对其物理化学性质带来深刻的影响,因此利用该研究发现的熔盐刻蚀机理有望对MXene的应用性能提供全新的调控手段。高温熔盐刻蚀比含F溶剂刻蚀更加高效、安全和绿色,为MXene材料的规模化生产提供了新途径。   以上工作近期以全文的形式发表于国际化学期刊《美国化学会志》(Journal of the American Chemical Society,DOI: 10.1021/jacs.9b00574),并申请中国发明专利6项(CN201810751303,2018114736517,CN201810930369,CN201810751944,CN201810751942,CN201810750620),申请国际专利1项(PCT/CN/2018/117811)。论文的第一作者李勉2018年毕业于宁波材料所,导师为研究员黄庆,目前入选先进能源材料工程实验室首批“青年人才托举计划”。瑞典林雪平大学合作团队为材料结构表征提供了大力支持。该工作参与人员得到国家自然科学基金资助(21671195,91426304)。