《木质素前体的酯化-科学直接提高了氮氧共掺杂碳纳米纤维超级电容器的电化学性能》

  • 来源专题:可再生能源
  • 编译者: pengh
  • 发布时间:2020-09-01
  • 采用简便的酯化电纺丝方法将废木质素转化为氮氧共掺杂的酯化木质素/聚丙烯腈基纳米碳纤维。FTIR和H1-NMR分析表明,羟基与酸酐发生了酯化反应,在前体中建立了酯键。酯化后的木质素具有较低的玻璃化转变温度(Tg),因此得到的E-CNFs具有纤维间键合结构、较高的杂原子含量和较好的润湿性,形成了高效的电子传递网络并贡献了赝电容。这种独特的结构和形貌使E-CNFs电极在1a g−1时具有320 F g−1的超高比电容,在6m KOH水溶液中作为电解质时具有20a g−1的2000.4 F g−1的超高比电容,显示出优异的速率能力。此外,组装E-CNFs / / E-CNFs对称超级电容器使用1 M Na2SO4水电解质提供112.5%的库仑效率高电流密度1 g−1,非凡的能量密度为17.92 Wh公斤−1 800 W的功率密度公斤−1,和良好的循环稳定性(∼5.5%的损失在5000周期)。这种纤维间键合结构控制策略为超级电容器高性能电极材料的进一步发展提供了前景和途径。

相关报告
  • 《深圳先进院等研发出基于氮硫共掺杂空心碳纳米带的高效钠离子电容器》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-07-04
    • 近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其团队联合湖南大学教授马建民研发出基于氮硫共掺杂空心纳米带的钠离子电容器,并获得高容量和长循环寿命。在5A/g的高电流密度下循环10000次后,容量保持率接近100%。相关研究成果以Hollow Carbon Nanobelts Co-Doped with Nitrogen and Sulfur via a Self-Templated Method for a High-Performance Sodium-Ion Capacitor(《自模板法制备氮硫共掺杂空心纳米带用于高性能钠离子电容器》)为题在线发表于国际材料期刊Small上(DOI: 10.1002/smll.201902659)。 锂资源储量有限,且分布极为不均,使得其成本较高,从而限制了其在储能等领域的大规模应用。由于钠储量丰富、与锂接近的电化学特性,使得钠离子储能器件在规模储能等领域具有良好的应用前景。近来,因兼具廉价和高功率密度的特点,钠离子电容器受到了人们的广泛关注。钠离子电容器通常采用具有较高比表面积的碳材料作为正极,通过阴离子的表面吸附实现储能。然而,仅仅依靠这种界面双电层储能机理的正极材料容量十分有限,如能同时引入赝电容的储能机制,将极大提高钠离子电容器的综合性能。 基于上述考虑,唐永炳与马建民及其团队成员崔春雨、王恒、欧学武等人通过自模板法制备出一种氮硫共掺杂的空心碳纳米带材料。这种具有高比表面积的空心结构有利于阴离子的迁移和吸附,从而获得一定的吸附容量和高的倍率性能;而通过氮硫共掺杂能够贡献一定的赝电容容量,进一步提升正极材料的比容量。以氮硫共掺杂的空心碳纳米带结构作为正极,锡箔作为负极组装新型的钠离子电容器,在1 A/g的电流密度下的放电比容量达到400 mAh/g;将电流密度提升至10 A/g,该电容器的容量依然可以保持在155 mAh/g左右。此外,采用锡箔同时作为负极活性材料和集流体,简化了钠离子电容器的整体结构,进一步提高了电容器的能量密度,该钠离子电容器全电池在676 W/kg功率密度下,能量密度高达250 Wh/kg左右。该工作为发展高性能钠离子储能器件提供了新的思路。 该项研究得到国家自然科学基金相关人才计划项目、广东省科技计划和深圳市科技计划等的资助。
  • 《碳纳米管和氧化锰混合纳米结构作为高性能纤维超级电容器。》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-04-09
    • 锰氧化物(MnO2)长期以来一直被研究作为一种假电容材料,用于制造纤维形状的超级电容器,但其导电性能差和脆性是明显的缺点。在这里,我们将纳米结构的MnO2域电化学插入到连续连接的碳纳米管(CNT)网络中,从而将电导率和机械耐久性传递给MnO2。特别地,我们合成了一个纤维状的同轴电极,并以镍光纤作为当前集电极(Ni/CNT/MnO2);问/汇总混合纳米壳的厚度大约是150μm和电极显示231厘米−1曼氏金融的具体参数。当以Ni/CNT/MnO2同轴电极作为阴极和阳极的对称器件与1.0 M Na2SO4水溶液为电解质时,我们发现能量密度为10.97。这些值表明,我们的混合系统具有明显的可穿戴式蓄能和收割设备的潜力。 ——文章发布于2018年4月05日