2024年6月7日,苏黎世联邦理工学院Berend Snijder通讯在Science发表题为Cellular architecture shapes the na?ve T cell response的文章,揭示了一个以前未被认识的T细胞生物学维度——细胞结构(cellular architecture)——它预先决定了T细胞受体(TCR)信号传导的强度和随后的分化轨迹。
作者采用了一种创新的方法,将高通量荧光显微镜与基于深度学习的图像分析相结合,来表征原代人类和小鼠T细胞的结构异质性。值得注意的是,他们确定了三个不同的结构亚群:形态极化细胞(morphologically polarized cell, TP),缺乏深核膜内陷(deep nuclear envelope invagination, NEI)的非极化细胞(conventional, TO),和表现出深核膜内陷的非极化细胞(stripy, T?)。这个NEI结构集中了内质网、线粒体和核孔复合体等细胞器。有趣的是,这些结构亚群的丰度在T细胞分化状态、组织和发育阶段各不相同。值得注意的是,T?结构在幼稚的CD8 T细胞中占主导地位,表明它在形成早期T细胞反应中发挥了作用。在抗原刺激后,T细胞迅速转变为TP形态,与To细胞相比,表现出更强的TCR信号传导和效应分化。
作者证明,T细胞中TCR信号传导的增强依赖于钙库操作性钙内流(store-operated calcium entry, SOCE)的增加,而SOCE机制在NEI内的空间共定位促进了这种增加。值得注意的是,即使考虑到T细胞活化的已知分子调节因子,如CD5、CXCR3和NUR77的表达,这种依赖于T-ARCH的信号差异仍然存在。利用离体单细胞命运跟踪,作者进一步揭示了T?细胞更早地开始细胞分裂,形成更大的集落,并优先分化为表达肿瘤坏死因子-α(TNF-α)和干扰素-γ(IFN-γ)的效应子样细胞。相反,TO细胞表现出受抑制的TCR信号传导、较慢的增殖和采用以TCF1表达为特征的记忆前体表型的倾向。
值得注意的是,作者在整个体内急性病毒感染过程中观察到T-ARCH景观的动态重塑。在重新建立富含T?的记忆库之前,na?ve T?-显性群体在感染高峰期转变为效应TP偏向的模式。这种结构可塑性表明TARCH在感染和疫苗接种过程中调节T细胞反应的潜在作用。该研究还揭示了T-ARCH异质性的起源,发现了自身肽-MHC相互作用在胸腺T细胞成熟过程中的作用。作者观察到从TO占主导地位的未成熟双阳性胸腺细胞转变为富含T?的幼稚CD8 T细胞库的转变,可能反映了在自身抗原更强的TCR信号传导下T?细胞的阳性选择。
总之,这项开创性工作鉴定了细胞结构作为幼稚T细胞命运决定的预先决定因素,揭示了T细胞生物学先前未被重视的维度。通过阐明T-ARCH依赖性TCR信号传导和分化轨迹的机制,此研究为T细胞对感染和疾病的反应的预测建模和治疗调节铺平了道路。