《美国6.5米空间望远镜主镜进行准直测试》

  • 来源专题:天文仪器与技术信息
  • 编译者: zwg@niaot.ac.cn
  • 发布时间:2017-09-23
  • Part of the Webb telescope’s ongoing cryogenic testing in Chamber A at Johnson includes aligning, or “phasing,” the telescope’s 18 hexagonally shaped primary mirror segments so they function as a single 6.5-meter mirror. All of these segments must have the correct position and correct curvature; otherwise, the telescope will not be able to accurately focus on its celestial targets.

    To measure the shape of the Webb telescope’s primary mirror, engineers use a test device called an interferometer, which shines a laser down onto the mirror. Because the mirror is segmented, it requires a specially designed interferometer, known as a multi-wavelength interferometer, which allows the engineers to use two light waves at once, explained Lee Feinberg, optical telescope element manager for the Webb telescope at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

    The interferometer splits the laser light into two separate waves. One of these waves goes through a lens and reflects off the primary mirror; the other wave acts as a reference. The reflected wave interferes with (meets) the reference wave, and engineers analyze the combined wave that results from that interference. “By analyzing the interference signal, engineers determine the mirror shape and the alignment of the mirrors,” explained Feinberg.

    When the engineers need to adjust the positions and shapes of the mirror segments to achieve precise alignment, they use the seven actuators (tiny mechanical motors) attached to the back of each one of the mirror segments. For each segment, six of these actuators are placed into groups of two, at three equally spaced points along the outside of the mirror (to adjust the segment’s position), and one is attached to six struts that are connected to each of the hexagonal mirror segment’s corners (to adjust the segment’s shape).

    The actuators on each mirror segment are capable of extremely minute movements, which allow engineers to align the entire primary mirror by finely adjusting each mirror segment. “They can move in steps that are a fraction of a wavelength of light, or about 1/10,000th the diameter of a human hair,” explained Feinberg.

    These actuators can also be used to precisely reshape each mirror segment to ensure they all match up once aligned. The ability to change the mirror alignment and shape is critical because the mirror must be unfolded from its unaligned stowed position when the telescope deploys. This test verifies the actuators have enough range of movement once they are in space, at their operational temperature of about 40 K (or about minus 388 degrees Fahrenheit / minus 233 degrees Celsius), to put the telescope’s primary mirror into its correct shape so it can accurately survey the universe.

    Testing the aligned mirrors

    With the mirrors aligned, engineers test Webb’s optics using a piece of support equipment called the ASPA, a nested acronym that means “AOS Source Plate Assembly.” The ASPA is a piece of test hardware that sits atop Webb’s Aft Optics Subsystem (AOS) and sends test laser light into and out of the telescope, thus acting like a source of artificial starlight. The AOS contains the telescope’s tertiary and fine-steering mirrors.

    During one part of the optical test, called the “half-pass” test, the ASPA feeds laser light straight into the AOS, where it is directed by the tertiary and fine-steering mirrors to Webb’s four science instruments, which sit in a compartment directly behind the primary mirror. This test lets engineers make measurements of the optics inside the AOS to verify that Webb’s tertiary mirror, which is immovable, is correctly aligned to the instruments.

    In another part of the test, called the “pass-and-a-half” test, light travels in a reverse path through the telescope optics. The light is again fed into the system from the ASPA, but upwards this time, to the secondary mirror. The secondary mirror reflects the light down to the primary mirror, which sends it back up to the top of Chamber A. Mirrors at the top of the chamber send the light back down to the telescope again, where it follows its normal course through the telescope to the instruments, but this time bypassing the ASPA test equipment.

    “This verifies not only the alignment of the primary mirror itself but also the alignment of the whole telescope — the primary mirror, secondary mirror, and the tertiary and fine-steering mirrors inside the AOS,” said Paul Geithner, the deputy project manager – technical for Webb telescope at Goddard. “Taken together, the half-pass and pass-and-a-half tests demonstrate that everything is aligned to everything else.”

    Because the ASPA is ground test hardware, it will be removed from the telescope once the cryogenic testing at Johnson is complete.

    The cryogenic vacuum environment of Chamber A simulates the frigid space environment where Webb will operate, and where it will collect data of never-before-observed portions of the universe. Verifying the entire telescope, including its optics and instruments, works correctly in this cold environment ensures the telescope will work correctly in space. The telescope and its instruments are designed to operate cold, so they must be cold to be aligned and to properly function.

    The James Webb Space Telescope is the scientific complement to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and the CSA (Canadian Space Agency).

  • 原文来源:https://www.nasa.gov/feature/goddard/2017/aligning-the-primary-mirror-segments-of-nasa-s-james-webb-space-telescope-with-light
相关报告
  • 《美国空间6.5米望远镜关键测试--自准直成像》

    • 来源专题:天文仪器与技术信息
    • 编译者:zwg@niaot.ac.cn
    • 发布时间:2017-10-31
    • During Webb’s extensive cryogenic testing, engineers checked the alignment of all the telescope optics and demonstrated the individual primary mirror segments can be properly aligned to each other and to the rest of the system. This all occurred in test conditions that simulated the space environment where Webb will operate, and where it will collect data of never-before-observed portions of the universe. Verifying the optics as a system is a very important step that will ensure the telescope will work correctly in space. The actual test of the optics involved a piece of support equipment called the ASPA, a nested acronym that means “AOS Source Plate Assembly.” The ASPA is a piece of hardware that sits atop Webb’s Aft Optics Subsystem (AOS), which is recognizable as a black “nose cone” that protrudes from the center of Webb’s primary mirror. The AOS contains the telescope’s tertiary and fine-steering mirrors. The ASPA is ground test hardware, and it will be removed from the telescope before it is launched into space. During testing, the ASPA fed laser light of various infrared wavelengths into and out of the telescope, thus acting like a source of artificial stars. In the first part of the optical test, called the “half-pass” test, the ASPA fed laser light straight into the AOS, where it was directed by the tertiary and fine-steering mirrors to Webb’s science instruments, which sit in a compartment directly behind the giant primary mirror. This test let engineers make measurements of the optics inside the AOS, and how the optics interacted with the science instruments. Critically, the test verified the tertiary mirror, which is immovable, was correctly aligned to the instruments. In another part of the test, called the “pass-and-a-half” test, light traveled in a reverse path through the telescope optics. The light was again fed into the system from the ASPA, but upwards, to the secondary mirror. The secondary mirror then reflected the light down to the primary mirror, which sent it back up to the top of Chamber A. Mirrors at the top of the chamber sent the light back down again, where it followed its normal path through the telescope to the instruments. This verified not only the alignment of the primary mirror itself but also the alignment of the whole telescope — the primary mirror, secondary mirror, and the tertiary and fine-steering mirrors inside the AOS. Taken together, the half-pass and pass-and-a-half tests demonstrated all the telescope optics are properly aligned and that they can be aligned again after being deployed in space. The photo, snapped by Ball Aerospace optical engineer Larkin Carey after the final fiber optic connections between ASPA and the laser source outside the chamber were made, verified the line of sight for the pass-and-a-half part of the test. The image was compared with one collected once the telescope was cold inside the chamber, to ensure any observed obscurations were due to the ASPA hardware and would not be present during science data collection on orbit. In the photo, Carey is harnessed to a “diving board” over the primary mirror. All tools (including the camera) were tethered, and all safety protocol for working over the mirror were closely followed. Carey faced upwards and took the photo of the secondary mirror to verify the ASPA line of sight. The secondary mirror is reflecting him as well as the AOS, the ASPA, and the primary mirror below. “Intricate equipment is required to test an instrument as complex as the Webb telescope. The ASPA allowed us to directly test key alignments to ensure the telescope is working as we expect, but its location meant we had to have a person install over 100 fiber optic cables by hand over the primary mirror,” said Allison Barto, Webb telescope program manager at Ball Aerospace. “This challenging task, which Larkin rehearsed many times to ensure it could be performed safely, also offered the opportunity to check the alignments by taking this ‘selfie’ prior to entering the test.” After cryogenic testing at Johnson is complete, Webb’s combined science instruments and optics journey to Northrop Grumman in Redondo Beach, California, where they will be integrated with the spacecraft element, which is the combined sunshield and spacecraft bus. Together, the pieces form the complete James Webb Space Telescope observatory. Once fully integrated, the entire observatory will undergo more tests during what is called "observatory-level testing." This testing is the last exposure to a simulated launch environment before flight and deployment testing on the whole observatory. Webb is expected to launch from Kourou, French Guiana, in the spring of 2019. The James Webb Space Telescope, the scientific complement to NASA's Hubble Space Telescope, will be the premier space observatory of the next decade. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
  • 《美国6.5米空间望远镜进入测试仓》

    • 来源专题:天文仪器与技术信息
    • 编译者:zwg@niaot.ac.cn
    • 发布时间:2017-09-07
    • NASA's Johnson Space Center’s "Chamber A" in Houston is an enormous thermal vacuum testing chamber and now appears to be opening it's "mouth" to take in NASA's James Webb Space Telescope for testing. The telescope and the Integrated Science Instrument Module (ISIM) are two of the three major elements that comprise the Webb telescope Observatory flight system and are being lifted into the chamber in this photo. The other is the Spacecraft Element (spacecraft bus and sunshield), which is currently under construction at Northrop Grumman Aerospace Systems (NGAS) in Redondo Beach, California. The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.